Question

in the figure a rope is wrapped around a wheel of radius R= 2.0 m. the...

in the figure a rope is wrapped around a wheel of radius R= 2.0 m. the moment of inertia if the wheel is 54 kg•m^2. the wheel is mounted with frictionless bearings on an axle through its center. A block of mass 14 kg is suspended from the end of the rope. when the system is released from rest it is observed that the block descends 10 m in 2.0 sec. what is the speed of the block?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
As an intern at an engineering firm, you are asked to measure the moment of inertia...
As an intern at an engineering firm, you are asked to measure the moment of inertia of a large wheel for rotation about an axis perpendicular to the wheel at its center. You measure the diameter of the wheel to be 0.320 m . Then you mount the wheel on frictionless bearings on a horizontal frictionless axle at the center of the wheel. You wrap a light rope around the wheel and hang an 8.20-kg block of wood from the...
A 1.53kg bucket hangs on a rope wrapped around a pulley of mass 7.07kg and radius...
A 1.53kg bucket hangs on a rope wrapped around a pulley of mass 7.07kg and radius 66cm. This pulley is frictionless in its axle, and has the shape of a solid uniform disk. A. Explain conceptually why the moment of inertia of this pulley is less than the moment of inertia of a hoop around its center with the same mass and circumference as the pulley. B. What is the angular acceleration of the pulley? C. What is the acceleration...
A cord is wrapped around the rim of a solid uniform wheel 0.220 mm in radius...
A cord is wrapped around the rim of a solid uniform wheel 0.220 mm in radius and of mass 7.60 kgkg. A steady horizontal pull of 40.0 NN to the right is exerted on the cord, pulling it off tangentially from the wheel. The wheel is mounted on frictionless bearings on a horizontal axle through its center. 1. Compute the angular acceleration of the wheel. 2. Compute the acceleration of the part of the cord that has already been pulled...
The mechanism shown in the figure (Figure 1)is used to raise a crate of supplies from...
The mechanism shown in the figure (Figure 1)is used to raise a crate of supplies from a ship's hold. The crate has total mass 43 kg . A rope is wrapped around a wooden cylinder that turns on a metal axle. The cylinder has radius 0.34 m and a moment of inertia I = 2.9 kg⋅m2 about the axle. The crate is suspended from the free end of the rope. One end of the axle pivots on frictionless bearings; a...
A 90 kg mass is tied to a massless rope wrapped around a solid cylindrical drum,...
A 90 kg mass is tied to a massless rope wrapped around a solid cylindrical drum, mounted on a frictionless horizontal axle. When the mass is released, it falls with acceleration 3.4 m/s2 . a. Find the rope tension. Express your answer in newtons. b. Find the drum's mass.
A bucket of water of mass 15.6kg is suspended by a rope wrapped around a windlass,...
A bucket of water of mass 15.6kg is suspended by a rope wrapped around a windlass, that is a solid cylinder with diameter 0.270m with mass 11.2kg . The cylinder pivots on a frictionless axle through its center. The bucket is released from rest at the top of a well and falls a distance 10.2m to the water. You can ignore the weight of the rope. A) What is the tension in the rope while the bucket is falling? B)...
A bucket of water of mass 15.9 kg is suspended by a rope wrapped around a...
A bucket of water of mass 15.9 kg is suspended by a rope wrapped around a windlass, that is a solid cylinder with diameter 0.350 m with mass 12.4 kg . The cylinder pivots on a frictionless axle through its center. The bucket is released from rest at the top of a well and falls a distance 10.2 m to the water. You can ignore the weight of the rope. Part A What is the tension in the rope while...
A wheel with radius 0.0600 m rotates about a horizontal frictionless axle at its center. The...
A wheel with radius 0.0600 m rotates about a horizontal frictionless axle at its center. The moment of inertia of the wheel about the axle is 2.50 kg⋅m2. The wheel is initially at rest. Then at t=0 a force F(t)=(5.50N/s)t is applied tangentially to the wheel and the wheel starts to rotate. What is the magnitude of the force at the instant when the wheel has turned through 8.00 revolutions?
4. A massless rope is wrapped around a uniform solid cylinder that has radius of 30...
4. A massless rope is wrapped around a uniform solid cylinder that has radius of 30 cm and mass 10 kg, as shown in the figure. The cylinder begins to unwind when it is released and allowed to rotate. (a) What is the acceleration of the center of mass of the cylinder? (b) If 90 cm of rope is unwound from the cylinder as it falls, how fast is it rotating at this instant?
A wheel has a horizontal axis and a moment of inertia I = 220.0 kg۰m2. A...
A wheel has a horizontal axis and a moment of inertia I = 220.0 kg۰m2. A rope is wrapped around the rim of the wheel, R = 0.230 m, and the free end of the rope has a 4.00 kg mass attached to it. The system is released from rest. Draw free-body diagrams for both the wheel and the 4.00 kg mass. Determine the angular acceleration α of the wheel.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT