Question

A level road makes a 90 degree turn with a 73m radius of a curvature. What...

A level road makes a 90 degree turn with a 73m radius of a curvature. What is the maximum speed for a car to negotiate this turn.

a) When the road is dry and the coefficient of static friction is .88

Homework Answers

Answer #1

When a car take a turn of 90 degrre ,it moves in circular motion.and maximum speed allow in circular motion is √urg.

Where u=friction coefficient.R=radius of curvature,g=acceleration due to gravity,

V=√.88×73×9.8=√629.522=25.09m/s

Note:-√ this symbol means square root.

For circular motion it is not necessary that car moves in complete circle,if car moves on in circular arc then also it is consider as circular motion.

If u have any doubt then feel free to ask.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a 900kg car moving on a flat, horizontal road negotiates a curve whose radius is 500m....
a 900kg car moving on a flat, horizontal road negotiates a curve whose radius is 500m. If the coefficient of static friction between the tires and the dry pavement is 0.523, find the maximum speed the car can have to make the turn successfully.
1) A car is traveling around a circular portion of road banked at an incline of...
1) A car is traveling around a circular portion of road banked at an incline of 20 degrees to the horizonal. If the radius of the turn is 75 m and the coefficient of static friction is 0.75 A) What is the maximum speed the car can take the turn without losing traction? B) At what speed would the static friction be zero?
1A) A car turning in a circle is acceleratring in the centripetal direction, even if the...
1A) A car turning in a circle is acceleratring in the centripetal direction, even if the speed is constant. This centripetal acceleration is the cause of a radially inward directed net force. On a level road this net force is the friction force acting from the road on the tires. You already looked at examples for this. Find an expression for the speed at which a car can negotiate the turn without any friction in the radial direction (f=0). Calculate...
The friction between the tires of a car and a flat road provides the centripetal force...
The friction between the tires of a car and a flat road provides the centripetal force for a turn. For a 1800 kg car travelling at 25 m/s on a curve of radius 100 m: a. Calculate the normal force on the car from the road. b. Calculate the centripetal force required to turn the car safely. c. Calculate the minimum coefficient of static friction between the tires and road for the car to turn safely. d. Ice on the...
P6C A 1550 kg car is making a banked (theta = 20.00)circular turn of 45.0 m...
P6C A 1550 kg car is making a banked (theta = 20.00)circular turn of 45.0 m radius at constant speed. If the coefficient of static friction between the tires and the road is 0.900, determine the maximum speed at which the car can make the turn. Draw a FBD of the car as part of your solution. (FBD shown below, but know how to do this!) what is the maximum speed
An 800-kg race car can drive around an unbanked turn with coefficient of static friction between...
An 800-kg race car can drive around an unbanked turn with coefficient of static friction between the track and the car's tires of 0.02. The turn has a radius of curvature of 150 m. Air flowing over the car's wing exerts a downward-pointing force of 10 000 N on the car. Calculate the maximum speed without slipping.
A car rounds a 50 meter radius curve that is banked such that a car rounding...
A car rounds a 50 meter radius curve that is banked such that a car rounding it does not need friction at a speed of 12 m/s. What is the bank angle of the road? The coefficient of kinetic friction between the tires and the road is 0.5 and the coefficient of static friction between the tires and the road is 0.8. If the same road were flat (instead of banked), determine the maximum speed with which the coar could...
A road with a radius of 75.0 m is banked so that a car can navigate...
A road with a radius of 75.0 m is banked so that a car can navigate the curve at a speed of 15.0 m/s without any friction. If the banking angle is reduced to zero when a car is going 20.0 m/s on this curve, what minimum coefficient of static friction is needed if the car is to navigate the curve without slipping?
An automobile moves on a level horizontal road in a circular path of radius 30.5m. The...
An automobile moves on a level horizontal road in a circular path of radius 30.5m. The coefficients of friction between the tires and the road are Ps = 0.50 and Pk = 0.1, respectively. The maximum speed with which this car can round this curve is?
A curve of radius 90 m is banked for a design speed of 80 km/h. If...
A curve of radius 90 m is banked for a design speed of 80 km/h. If the coefficient of static friction is 0.30 (wet pavement), at what range of speeds can a car safely make the curve? Minimum- ? km/h Maximum - ? km/h