Question

The working substance of an engine is 1.00 mol of a monatomic ideal gas. The cycle...

The working substance of an engine is 1.00 mol of a monatomic ideal gas. The cycle begins at P1=1.00 atm and V1=24.6L. The gas is heated at constant volume to P2=2.00atm. It then expands at constant pressure until its volume is 49.2L. The gas is then cooled at constant volume until its pressure is again 1.00 atm. It is then compressed at constant pressure to its original state. All the steps are quasi-static and reversible.
Calculate the TOTAL work done by the gas.

Homework Answers

Answer #1

please upvote. If u have any doubt regarding the solution then feel free to ask me anything in the comments. Stay safe and blessed.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A heat engine using a diatomic gas follows the cycle shown in the ??pV diagram. The...
A heat engine using a diatomic gas follows the cycle shown in the ??pV diagram. The gas starts out at point 1 with a volume of ?1=233 cm3,V1=233 cm3, a pressure of ?1=147 kPa,p1=147 kPa, and a temperature of 287 K.287 K. The gas is held at a constant volume while it is heated until its temperature reaches 455 K455 K (point 2). The gas is then allowed to expand adiabatically until its pressure is again 147 kPa147 kPa (point...
Physics_2_2.5 An ideal monatomic gas is in a vessel with the volume V1 = 1m3 under...
Physics_2_2.5 An ideal monatomic gas is in a vessel with the volume V1 = 1m3 under the pressure p1 = 2 105 Pa. The gas is first heated at a constant pressure to the Volume V2 = 3m3 and then at constant volume to the pressure p2 = 5 105 Pa. Find the amount of heat Q supplied to the gas. A clear process is highly appreciated! Thank you so much for the help!
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes a 3-step process as follows:                  (i)         It expands adiabatically from T1 = 588 K to T2 = 389 K                  (ii)        It is compressed at constant pressure until its temperature reaches T3 K                  (iii)       It then returns to its original pressure and temperature by a constant volume process. A). Plot these processes on a PV diagram B). Determine the temperature T3 C)....
The diagram shows the pressure and volume of an ideal gas during one cycle of an...
The diagram shows the pressure and volume of an ideal gas during one cycle of an engine. (Figure 1) As the gas proceeds from state 1 to state 2, it is heated at constant pressure. It is then cooled at constant volume, until it reaches state 3. The gas is then cooled at constant pressure to state 4. Finally, the gas is heated at constant volume until it returns to state 1. Part A Find W12 , the work done...
a 2 mol ideal monatomic gas is carried through a cycle from A to C. in...
a 2 mol ideal monatomic gas is carried through a cycle from A to C. in state A it has a pressure of 2×10^5 Pa and a volume of 0.010 m^3, then it increases its volume to 0.030 m^3 at constant pressure to reach state B, then it reaches state C to a constant volume decreasing its pressure qnd finally the gas isothermally compounded solwly to its original volume closing the cycle. the heat of the fas in the complete...
4. Three moles of a monatomic ideal gas are initially at a pressure of 1.00 atm...
4. Three moles of a monatomic ideal gas are initially at a pressure of 1.00 atm and a temperature of 20.0OC. The gas is compressed adiabatically to a final pressure of 5.00 atm. Find: (a) the initial volume of the gas; (b) the final volume of the gas; (c) the final temperature of the gas; (d) the work done by the gas during the compression. Answers: (a) 72.1 L; (b) 27.5 L; (c) 285 OC; (d) -97.8 atm-L Please show...
Use these steps to answer the questions below: Step 1: A sample of monoatomic ideal gas,...
Use these steps to answer the questions below: Step 1: A sample of monoatomic ideal gas, initially at pressure P1 and volume V1, expands isothermally and reversibly to a final pressure P2 and volume V2 Step 2: The ideal gas is compressed isothermally back to its initial conditions using constant pressure. Give the equation needed to solve for the following Wsys (Step 1) = qsys (Step 2) =
Rectangular PV Cycle A piston contains 260 moles of an ideal monatomic gas that initally has...
Rectangular PV Cycle A piston contains 260 moles of an ideal monatomic gas that initally has a pressure of 2.61 × 105 Pa and a volume of 4.9 m3. The piston is connected to a hot and cold reservoir and the gas goes through the following quasi-static cycle accepting energy from the hot reservoir and exhausting energy into the cold reservoir. 1. The pressure of the gas is increased to 5.61 × 105 Pa while maintaining a constant volume. 2....
A mole of a monatomic ideal gas is taken from an initial pressure p and volume...
A mole of a monatomic ideal gas is taken from an initial pressure p and volume V to a final pressure 3p and volume 3V by two different processes: (I) It expands isothermally until its volume is tripled, and then its pressure is increased at constant volume to the final pressure. (II) It is compressed isothermally until its pressure is tripled, and then its volume is increased at constant pressure to the final volume. Show the path of each process...
Calculate the total change of entropy for an ideal monatomic gas expanding from a volume V...
Calculate the total change of entropy for an ideal monatomic gas expanding from a volume V into a volume 2V via: i) Free expansion ii) Quasi-static isothermal expansion iii) Quasi-static adiabatic expansion; iv) Do the results of (iii) surprise you? Comment on what these results mean in terms of reversible and irreversible processes.