Question

A 70.0 kg70.0 kg ice hockey goalie, originally at rest, has a 0.170 kg0.170 kg hockey...

A 70.0 kg70.0 kg ice hockey goalie, originally at rest, has a 0.170 kg0.170 kg hockey puck slapped at him at a velocity of 41.5 m/s.41.5 m/s. Suppose the goalie and the puck have an elastic collision, and the puck is reflected back in the direction from which it came. What would the final velocities of the goalie and the puck be in this case? Assume that the collision is completely elastic

Homework Answers

Answer #1

In a perfectly elastic collision
Using momentum conservation
Pi = Pf
m1V1i + m2V2i = m1V1f + m2*V2f
given that m1 = 70.0 kg & m2 = 0.170 kg
V1i = 0 m/sec
V2i = 41.5 m/sec.
0 + 0.170*41.5 = 70.0*V1f + 0.170*V2f = 7.055
Now other condition of the elastic collisions is that
V1f - V2f = V2i - V1i
V1f - V2f = 41.5 - 0
V1f - V2f = 41.5
70.0*V1f + 0.170*V2f = 7.055
Now Solving both equation
Multiply equation 1 with 0.170 and Add both of them
70.17*V1f = (41.5*0.170 + 7.055)
V1f = (41.5*0.170 + 7.055)/70.17 = 0.2010 m/sec
V1f = 0.2010 m/sec
V2f = V1f -41.5
V2f = 0.2010 - 41.5 = -41.299 m/sec
Please Upvote.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 70.0-kg ice hockey goalie, originally at rest, has a 0.170-kg hockey puck slapped at him...
A 70.0-kg ice hockey goalie, originally at rest, has a 0.170-kg hockey puck slapped at him at a velocity of 35.5 m/s. Suppose the goalie and the puck have an elastic collision, and the puck is reflected back in the direction from which it came. What would the final velocities of the goalie and the puck be in this case? Assume that the collision is completely elastic.
A 67.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped...
A 67.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped at him at a velocity of 34.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities (in m/s) be in this case? (Assume the original direction of the ice puck toward the goalie is in the positive direction. Indicate the direction with the...
Contents » A 81.0-kg ice hockey goalie, originally at rest, catches a 0.150-kg hockey puck slapped...
Contents » A 81.0-kg ice hockey goalie, originally at rest, catches a 0.150-kg hockey puck slapped at him at a velocity of 28.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What is the final velocity of the goalie?
A young 43-kg ice hockie goalie, originally at rest, catches a 0.145-kg hockey puck slapped at...
A young 43-kg ice hockie goalie, originally at rest, catches a 0.145-kg hockey puck slapped at him at a speed of 34.5 m/s. In this problem, take the original direction of the puck as positive. Part A) Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would the final velocity of the puck, in meters per second, be in this case? Vf,2 = Part...
7. A 77.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck...
7. A 77.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped at him at a velocity of 34.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities (in m/s) be in this case? (Assume the original direction of the ice puck toward the goalie is in the positive direction. Indicate the direction with...
A 70-kg hockey player, originally at rest, hits a 0.15-kg hockey puck slapped at him at...
A 70-kg hockey player, originally at rest, hits a 0.15-kg hockey puck slapped at him at a velocity of 35 m/s. Following the hit the ice puck reflected back at 34.85 m/s in the direction from which it came. Ignore friction. Determine the final velocity of the hockey player. Select one: a. -5.25 m/s b. 5.25 m/s c. 0 m/s d. 0.1497 m/s
Two identical pucks collide on an air hockey table. One puck was originally at rest. If...
Two identical pucks collide on an air hockey table. One puck was originally at rest. If the incoming puck has a velocity of 7.10 m/s along the +x-axis and scatters to an angle of 36.0° above the +x-axis, what is the velocity (magnitude and direction) of the second puck? (You may use the result that θ1 − θ2 = 90° for elastic collisions of objects that have identical masses.) Velocity (magnitude) = Velocity (direction) = below +x-axis What is the...
Two identical pucks collide on an air hockey table. One puck was originally at rest. If...
Two identical pucks collide on an air hockey table. One puck was originally at rest. If the incoming puck has a velocity of 6.50 m/s along the +x-axis and scatters to an angle of 32.0° above the +x-axis. A) What is the velocity (magnitude and direction) of the second puck? (You may use the result that θ1 − θ2 = 90° for elastic collisions of objects that have identical masses.) Velocity (magnitude) = _______ Velocity (direction) = ________ below +x-axis...
You are watching a hockey game on your digital video recorder. Your team's goalie is at...
You are watching a hockey game on your digital video recorder. Your team's goalie is at rest when he catches a 0.18-kg puck moving straight toward him. The announcer says it was a 35 m/s slap shot, based on radar gun data. Normally the goalie would be braced, but in this case he is resting on parallel skate blades so that there is negligible friction to impede his subsequent motion. The collision is too fast to observe quantitatively, but by...
A 0.250-kg ice puck, moving east with a speed of 5.58 m/s, has a head-on collision...
A 0.250-kg ice puck, moving east with a speed of 5.58 m/s, has a head-on collision with a 0.900-kg puck initially at rest. Assume that the collision is perfectly elastic. a. What is the speed of the 0.250-kg puck after the collision? b. What is the direction of the velocity of the 0.250-kg puck after the collision? c. What is the direction of the velocity of the 0.250-kg puck after the collision? d. What is the direction of the velocity...