Question

An object with a mass of 47.3 g is moving uniformly with a velocity of 39.9...

An object with a mass of 47.3 g is moving uniformly with a velocity of 39.9 m/s along the positive x-axis. A second object, of mass 36.0 g, is moving at +8.9 m/s along the same line, in front of the first mass.

a) Using the usual sign conventions, what is the velocity of the centre-of-mass of the two objects?

b) What is the velocity of the first particle, in the zero momentum frame, after an elastic collision?

c) Using your answer from the previous question, determine the velocity in the laboratory frame, of the first particle after an elastic collision.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider object-1 of mass m1=652gram moving on the +X axis with the velocity of v1=13.5 m/s....
Consider object-1 of mass m1=652gram moving on the +X axis with the velocity of v1=13.5 m/s. Object-1 collide with stationary object-2 of mass m2=846gram on the X-axis. After collision, both objects are moving X-axis. a) Consider the collision is inelastic, and two objects combined into one object after the collision. Find the velocity of the combined object after collision? Consider the collision remains about 1.82ms. find the impulse acts on object-1 during the collision . Find the energy lost due...
Bookmark An object with a mass of 5.00 g is moving to the right at 14.0...
Bookmark An object with a mass of 5.00 g is moving to the right at 14.0 cm/s when it is overtaken by an object with a mass of 25.0 g moving in the same direction with a speed of 18.0 cm/s. If the collision is elastic, determine the speed of each object after the collision. 25.0-g object ____ cm/s 5.00-g object ____cm/s
An object with a mass of 8.00 g is moving to the right at 14.0 cm/s...
An object with a mass of 8.00 g is moving to the right at 14.0 cm/s when it is overtaken by an object with a mass of 27.0 g moving in the same direction with a speed of 21.0 cm/s. If the collision is elastic, determine the speed of each object after the collision. 27.0-g object     cm/s 8.00-g object     cm/s
A bullet of mass 10.0 gram moving at a velocity of 336 m/s toward the right...
A bullet of mass 10.0 gram moving at a velocity of 336 m/s toward the right strikes an orange of mass 90.0 gram. The bullet passes through the orange and in the process pulls out 10.0 grams of orange innards. Assuming that this collision is elastic (i.e., that no kinetic energy is lost), what is the velocity of the rest of the remaining 80 grams of orange? Take rightward motion to be positive and leftward motion to be negative. Hint:...
There is object-1 of mass m1=2.84kg moving on +x axis with the velocity of v1=9.62m/s. Object-1...
There is object-1 of mass m1=2.84kg moving on +x axis with the velocity of v1=9.62m/s. Object-1 is explode into two segments of masses m2=1.74 kg and m3=1.10kg. Mass m2 moves in +250 with the velocity of 3.57m/s. a) Find the x and y-components of velocity of mass m3 after collision? (4 points) b) Find the velocity component of x-direction of the center of mass of the two-particle system after collision. Find the velocity component of y-direction of the center of...
Assume: Moving to the right is positive. A(n) 10 g object moving to the right at...
Assume: Moving to the right is positive. A(n) 10 g object moving to the right at 29 cm/s makes an elastic head-on collision with a 14 g object moving in the opposite direction at 42 cm/s. 10 g 29 cm/s 14 g 42 cm/s Find the velocity of the first object immediately after the collision. Answer in units of cm/s
1- An atom of mass ? moving in the direction + ? with speed ? undergoes...
1- An atom of mass ? moving in the direction + ? with speed ? undergoes an elastic collision with an atom of mass 3? at rest. After the collision the first atom moves in the + ? direction. Find the velocities of both atoms (in terms of ?) after the collision. to. Solve the problem from the frame of reference described in the problem (this is the “laboratory” frame). Draw diagrams representing the situation before and after the collision...
A 1.0kg object initially moving with a velocity of 3.0m/s to the right makes an elastic...
A 1.0kg object initially moving with a velocity of 3.0m/s to the right makes an elastic head-on collision with a 1.5kg object initially moving to the left at 2.0m/s. a) What are the final velocities of the two objects after the collision? b) Using the given initial data for the two-object system as well as your results, show that the total kinetic energy is conserved for this elastic collision.
2 objects, moving in one dimension, undergo an isolated collision. Object 1 has initial velocity 1...
2 objects, moving in one dimension, undergo an isolated collision. Object 1 has initial velocity 1 m/s. Object 2 has an initial velocity -3 m/s. After the collision, the relative velocity of the 2 objects is vAB=+2 m/s. The reduced mass of the two objects is ⅔ kg. What is the change in total kinetic energy of the entire system during this collision?  Express your answer in units of Joules.
One object is at rest, and another is moving. The two collide in a one-dimensional, completely...
One object is at rest, and another is moving. The two collide in a one-dimensional, completely inelastic collision. In other words, they stick together after the collision and move off with a common velocity. Momentum is conserved. The speed of the object that is moving initially is 30 m/s. The masses of the two objects are 3.0 and 7.6 kg. Determine the final speed of the two-object system after the collision for the case (a) when the large-mass object is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT