Question

Course Contents » ... » Set 04 (10/09 Tu 10 PM) » Block and a spring...

Course Contents » ... » Set 04 (10/09 Tu 10 PM) » Block and a spring A moving 4.40 kg block collides with a horizontal spring whose spring constant is 433 N/m. The block compresses the spring a maximum distance of 13.50 cm from its rest position. The coefficient of kinetic friction between the block and the horizontal surface is 0.450. What is the work done by the spring in bringing the block to rest? How much mechanical energy is being dissipated by the force of friction while the block is being brought to rest by the spring? What is the speed of the block when it hits the spring?

Homework Answers

Answer #1

Work done by the spring = energy stored in the compressed spring

work = 1/2kx^2

work = 1/2(433 N/m)(.135m)^2

work = 3.9457 J

For friction, Work = Fd, where F is the force of friction which equals 0.45 mg. The distance is .135 m

So W = .45 (4.4 kg)(9.8 m/s^2)(.135 m) = 2.61954 J

This is the answer to the second question.

For the third question:

At the instant of impact the energy is all kinetic (1/2mv^s)

When the spring is compressed, the energy is now split between the work done by friction, .805 J, and the elastic energy of the spring which equals to the work done in compressing the spring which is 1.753 J.

kinetic energy = spring work + friction work

1/2 mv^2 = 3.9457 J +2.61954 J

1/2 mv^2 = 6.56524 J

solving for v

v = sqroot(2 (6.56524 J) / 4.4 kg)

v = 1.7275 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A moving 3.70kg block collides with a horizontal spring whose spring constant is 363 N/m. The...
A moving 3.70kg block collides with a horizontal spring whose spring constant is 363 N/m. The block compresses the spring a maximum distance of 13.50cm from its rest postion. The coefficient of kinetic friction between the block and the horizontal surface is 0.310. a) What is the work done by the spring in bringing the block to rest? Hint: "be careful about the sign of the work! Is it positive or negative?" b) How much mechanical energy is being dissipated...
A 2.5-kg block is sliding along a rough horizontal surface and collides with a horizontal spring...
A 2.5-kg block is sliding along a rough horizontal surface and collides with a horizontal spring whose spring constant is 320 N/m. Unstretched, the spring is 20.0 cm long. The block causes the spring to compress to a length of 12.5 cm as the block temporarily comes to rest. The coefficient of kinetic friction between the block and the horizontal surface is 0.25. a) How much work is done by the spring as it brings the block to rest? b)...
A bullet of mass 1.4×10−3 kg embeds itself in a wooden block with mass 0.987 kg...
A bullet of mass 1.4×10−3 kg embeds itself in a wooden block with mass 0.987 kg , which then compresses a spring (k = 130 N/m ) by a distance 5.5×10−2 m before coming to rest. The coefficient of kinetic friction between the block and table is 0.46. a)What is the initial speed of the bullet? b)What fraction of the bullet's initial kinetic energy is dissipated (in damage to the wooden block, rising temperature, etc.) in the collision between the...
A bullet of mass 2.0×10−3 kg embeds itself in a wooden block with mass 0.991 kg...
A bullet of mass 2.0×10−3 kg embeds itself in a wooden block with mass 0.991 kg , which then compresses a spring (k = 200 N/m ) by a distance 3.5×10−2 m before coming to rest. The coefficient of kinetic friction between the block and table is 0.52. a)What is the initial speed of the bullet? b)What fraction of the bullet's initial kinetic energy is dissipated (in damage to the wooden block, rising temperature, etc.) in the collision between the...