Question

Two identical solid disks of unknown mass are moving on horizontal surfaces. The center of mass...

Two identical solid disks of unknown mass are moving on horizontal surfaces. The center of mass of each disk has the same linear speed of 8.5 m/s. One of the disks is rolling without slipping, and the other is sliding along a frictionless surface without rolling. Each disk then encounters an inclined plane 15° above the horizontal. One continues to roll up the incline without slipping while the other continues to slide up, again without friction. Eventually, they come to a momentary halt due to gravity slowing them down.

Determine the maximum distance along the incline each disk moves before coming to a stop.

Homework Answers

Answer #1


for the sliding disk 1

initial kinetic energy K1i = (1/2)*m*v^2


work done by gravity Wg = -m*g*L*sintheta


final kinetic energy K1f = 0


work done = change in KE

-m*g*L*sintheta = - (1/2)*m*v^2


L = v^2/(2*g**sintheta)


L = 8.5^2/(2*9.8*sin15) = 14.24 m

------------------------------------------

for rolling disk 2


initial kientic energy K2i = (1/2)*m*v^2 + (1/2)*I*w^2

w = angular speed = v/r

I = moment of inertia = (1/2)*m*r^2


K2i = (3/4)*m*v^2


work done by gravity Wg = -m*g*L*sintheta


final kinetic energy K2f = 0


work done = change in KE

-m*g*L*sintheta = - (3/4)*m*v^2


L = 3v^2/(4*g**sintheta)


L = 3*8.5^2/(4*9.8*sin15) = 21.36 m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two identical wheels are moving on horizontal surfaces. The center of mass of each has the...
Two identical wheels are moving on horizontal surfaces. The center of mass of each has the same linear speed. However, one wheel is rolling, while the other is sliding on a frictionless surface without rolling. Each wheel then encounters an incline plane. One continues to roll up the incline, while the other continues to slide up. Eventually they come to a momentary halt, because the gravitational force slows them down. Each wheel is a disk of mass 3.73 kg. On...
A solid disk with a radius of 33.3 cm is moving so that its center of...
A solid disk with a radius of 33.3 cm is moving so that its center of mass is initially moving at 4 m/s while also rolling without slipping at 12rad/s along a horizontal surface. It rolls up an incline, coming to rest as shown before rolling back down (drawing is not to scale). Consider the disk at the bottom of the hill. What is the ratio of the rotational kinetic energy to the total kinetic energy of the disk, Krot/Ktotal?A....
A hollow sphere (mass 8.8 kg, radius 54.8 cm) is rolling without slipping along a horizontal...
A hollow sphere (mass 8.8 kg, radius 54.8 cm) is rolling without slipping along a horizontal surface, so its center of mass is moving at speed vo. It now comes to an incline that makes an angle 56o with the horizontal, and it rolls without slipping up the incline until it comes to a complete stop. Find a, the magnitude of the linear acceleration of the ball as it travels up the incline, in m/s2.
Consider the following three objects, each of the same mass and radius: 1) Solid Sphere 2)...
Consider the following three objects, each of the same mass and radius: 1) Solid Sphere 2) Solid Disk 3) Hoop. All three are release from rest at top of an inclined plane. The three objects proceed down the incline undergoing rolling motion without slipping. use work-kinetic energy theorem to determine which object will reach the bottom of the incline first
Two blocks are positioned on surfaces, each inclined at the same angle of 45.5 degrees with...
Two blocks are positioned on surfaces, each inclined at the same angle of 45.5 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 6.46 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.290. Assume static friction has been overcome and that everything can slide....
1) Consider an object of mass m1 = 0.425 kg moving with a uniform speed of...
1) Consider an object of mass m1 = 0.425 kg moving with a uniform speed of 6.65 m/s on a frictionless surface. This object makes an elastic head-on collision with another object of mass m2 = 0.555 kg  which is initially at rest. (a) Find the speed of m1 immediately after collision. (b) Find the speed of m2 immediately after collision. 2) An object of mass m1 = 0.395 kg  starts from rest at point  and slides down an incline surface that makes...
A large sphere rolls without slipping across a horizontal surface as shown. The sphere has a...
A large sphere rolls without slipping across a horizontal surface as shown. The sphere has a constant translational speed of 10. m/s, a mass of 7.3 kg (16 lb bowling ball), and a radius of 0.20 m. The moment of inertia of the sphere about its center is I = (2/5)mr2. The sphere approaches a 25° incline of height 3.0 m and rolls up the ramp without slipping. (a) Calculate the total energy, E, of the sphere as it rolls...
A uniform solid marble, of mass m = 20.0 g and diameter 1.00 cm, rolls without...
A uniform solid marble, of mass m = 20.0 g and diameter 1.00 cm, rolls without sliding down a large symmetric steel bowl, starting from rest at point A, at the top of the left(no-slip) side. The top of each side is a distance h = 15.0 cm above the bottom of the bowl. The left half of the bowl is rough enough to cause the marble to roll without slipping, but the right half of the bowl is frictionless...
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...