Question

A solid sphere of mass 4.0 kg and radius 0.12 m starts from rest at the...


A solid sphere of mass 4.0 kg and radius 0.12 m starts from rest at the top of a ramp inclined 15 degrees and rolls to the bottom. The upper end of the ramp is 2.0 m higher than the lower end. What is the linear velocity when it reaches the bottom of the ramp?

A. 4.7 m/s
B. 4.1 m/s
C. 3.4 m/s
D. 5.3 m/s
E. 1.8 m/s

Homework Answers

Answer #1

When sphere is placed on the top of the inclined plane then it has only potential enegy.as it rolls down then its potential energy is converted into linear kinetic energy and rotational kinetic energy.when it reaches to the bottom then its whole potential energy is converted into partly into translational kinetic energy and partly into rotational kinetic energy.

from Law of conservation of energy-

Potential energy at the top=(Translation+rotational) K.E. at the bottom

     ---------------------------------(1)

But for solid sphere moment of inertia-

  

and

using above in equation(1)

Hence option D is correct...

(If further have any doubt then comment me...)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A uniform, solid sphere of radius 4.50 cm and mass 2.25 kg starts with a purely...
A uniform, solid sphere of radius 4.50 cm and mass 2.25 kg starts with a purely translational speed of 1.25 m/s at the top of an inclined plane. The surface of the incline is 2.75 m long, and is tilted at an angle of 22.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp. ?2=__________ m/s
A uniform, solid sphere of radius 3.50 cm and mass 1.25 kg starts with a purely...
A uniform, solid sphere of radius 3.50 cm and mass 1.25 kg starts with a purely translational speed of 2.50 m/s at the top of an inclined plane. The surface of the incline is 1.50 m long, and is tilted at an angle of 28.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp. ?2= m/s
A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg starts with a purely...
A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg starts with a purely translational speed of 1.25 m/s at the top of an inclined plane. The surface of the incline is 1.00 m long, and is tilted at an angle of 25.0 ∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed v 2 at the bottom of the ramp.
A 1.5 kg solid sphere (radius = 0.15 m ) is released from rest at the...
A 1.5 kg solid sphere (radius = 0.15 m ) is released from rest at the top of a ramp and allowed to roll without slipping. The ramp is 0.70 m high and 5.4 m long. When the sphere reaches the bottom of the ramp, what is its total kinetic energy? When the sphere reaches the bottom of the ramp, what is its rotational kinetic energy? When the sphere reaches the bottom of the ramp, what is its translational kinetic...
A 2.9 kg solid sphere (radius = 0.15 m) is released from rest at the top...
A 2.9 kg solid sphere (radius = 0.15 m) is released from rest at the top of a ramp and allowed to roll without slipping. The ramp is 0.85 m high and 5.2 m long. 1. When the sphere reaches the bottom of the ramp, what are its total kinetic energy, 2. When the sphere reaches the bottom of the ramp, what is its rotational kinetic energy? 3. When the sphere reaches the bottom of the ramp, what is its...
A hollow sphere (mass M, radius R) starts from rest at the top of a hill...
A hollow sphere (mass M, radius R) starts from rest at the top of a hill of height H. It rolls down the hill without slipping. Find an expression for the speed of the ball's center of mass once it reaches the bottom of the hill.
A uniform, solid sphere of radius 5.75 cm 5.75 cm and mass 3.25 kg 3.25 kg...
A uniform, solid sphere of radius 5.75 cm 5.75 cm and mass 3.25 kg 3.25 kg starts with a purely translational speed of 1.25 m/s 1.25 m/s at the top of an inclined plane. The surface of the incline is 2.25 m 2.25 m long, and is tilted at an angle of 29.0 ∘ 29.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ? 2 v2 at the...
A solid, uniform disk of radius 0.250 m and mass 54.1 kg rolls down a ramp...
A solid, uniform disk of radius 0.250 m and mass 54.1 kg rolls down a ramp of length 3.80 m that makes an angle of 12.0° with the horizontal. The disk starts from rest from the top of the ramp. (a) Find the speed of the disk's center of mass when it reaches the bottom of the ramp. ___________m/s (b) Find the angular speed of the disk at the bottom of the ramp. ___________rad/s
A solid sphere of a radius 0.2 m is released from rest from a height of...
A solid sphere of a radius 0.2 m is released from rest from a height of 2.0 m and rolls down the incline as shown. If the initial speed Vi= 5 m/s, calculate the speed (Vf) of the sphere when it reaches the horizontal surface. (moment of inertia of a sphere is (2/5) Mr^)
1. A solid sphere of mass 50 kg rolls without slipping. If the center-of-mass of the...
1. A solid sphere of mass 50 kg rolls without slipping. If the center-of-mass of the sphere has a translational speed of 4.0 m/s, the total kinetic energy of the sphere is 2. A solid sphere (I = 0.4MR2) of radius 0.0600 m and mass 0.500 kg rolls without slipping down an inclined plane of height 1.60 m . At the bottom of the plane, the linear velocity of the center of mass of the sphere is approximately _______ m/s.