Question

A 70 Ω resistor, an 7.0 μF capacitor, and a 34 mH inductor are connected in...

A 70 Ω resistor, an 7.0 μF capacitor, and a 34 mH inductor are connected in series in an ac circuit. -Calculate the impedance for a source frequency of 300 Hz. -Calculate the impedance for a source frequency of 30.0 kHz.

Homework Answers

Answer #1

Part A

when f = 300 Hz

Impedance is given by:

Z = sqrt (R^2 + (XL - Xc)^2)

R = 70 ohm

XL = w*L = 2*pi*f*L = 2*pi*300*34*10^-3 = 64.1 ohm

Xc = 1/(2*pi*f*C) = 1/(2*pi*300*7*10^-6) = 75.8 ohm

Z = sqrt (70^2 + (64.1 - 75.8)^2) = 70.97 ohm = 71 Ohm

Part B.

when f = 30 kHz = 30000 Hz

Impedance is given by:

Z = sqrt (R^2 + (XL - Xc)^2)

R = 70 ohm

XL = w*L = 2*pi*f*L = 2*pi*30000*34*10^-3 = 6408.8 ohm

Xc = 1/(2*pi*f*C) = 1/(2*pi*30000*7*10^-6) = 0.758 ohm

Z = sqrt (70^2 + (6408.8 - 0.758)^2) = 6408.4 ohm

Please Upvote.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 70 Ω resistor, an 9.0 μF capacitor, and a 36 mH inductor are connected in...
A 70 Ω resistor, an 9.0 μF capacitor, and a 36 mH inductor are connected in series in an ac circuit. a.) Calculate the impedance for a source frequency of 300 Hz. Express your answer with the appropriate units. b.) Calculate the impedance for a source frequency of 30.0 kHz. Express your answer with the appropriate units.
The resistor (? =40 Ω), capacitor (? = 5 μF) and inductor (? = 2mH) are...
The resistor (? =40 Ω), capacitor (? = 5 μF) and inductor (? = 2mH) are connected in parallel to the source of alternating voltage. Find the impedance of the circuit for the frequency ?1 = 60 Hz and ?2 = 20 kHz
A 10.0 Ω resistor, 10.0 mH inductor, and 10.0 μF capacitor are connected in series with...
A 10.0 Ω resistor, 10.0 mH inductor, and 10.0 μF capacitor are connected in series with a 10.0 kHz voltage source. The rms current through the circuit is 0.200 A. a. Sketch an accurate phasor diagram. b. Find the rms voltage drop across each of the 3 elements. c. What is the phase angle between the current and the applied voltage? d. Find the rms voltage in the circuit.
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source...
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source of amplitude 12 V and frequency 120 Hz. Part (h) With a source voltage of Vsource = V0 cos(2πft), what is the instantaneous voltage, in volts, across the capacitor at time t = 2.25 s? Part (i) What is the amplitude of the voltage drop across the inductor, in volts? Part (j) With a source voltage of Vsource = V0cos(2πft), what is the instantaneous...
A series ac circuit contains a 350-Ω resistor, a 11.0-mH inductor, a 3.70-μF capacitor, and an...
A series ac circuit contains a 350-Ω resistor, a 11.0-mH inductor, a 3.70-μF capacitor, and an ac power source of voltage amplitude 45.0 V operating at an angular frequency of 360 rad/s . What is the power factor of this circuit? Find the average power delivered to the entire circuit. What is the average power delivered to the resistor, to the capacitor, and to the inductor? Enter your answers numerically separated by commas.
A 10 .0 Ω resistor, 10.0 mH inductor, and a 10.0μF capacitor are connected in series...
A 10 .0 Ω resistor, 10.0 mH inductor, and a 10.0μF capacitor are connected in series with a 10.0 kHz voltage source. The current through the circuit is 0.20 A. Find the voltage drop across each of the 3 elements. What is the resonance frequency of this circuit? Is the voltage lagging or leading the current in this circuit?
A 50 Ω resistor, 100 mH inductor and 60 μ F capacitor are connected in series...
A 50 Ω resistor, 100 mH inductor and 60 μ F capacitor are connected in series to an AC generator. The generator produces 60 V r m s at 30 Hz. What is the maximum current in the circuit at 30 Hz?
A series RLC circuit contains a 210 Ω resistor, a 17.0 mH inductor, a 2.70 μF...
A series RLC circuit contains a 210 Ω resistor, a 17.0 mH inductor, a 2.70 μF capacitor, and an AC voltage source of amplitude 45.0 V operating at an angular frequency of 360 rad/s. (a) What is the power factor of this circuit? (b) Find the average power delivered to the entire circuit by the source, in W (c) What is the average power delivered to the capacitor, in W?
A 180 Ω resistor is in series with a 0.105 H inductor and a 0.400 μF...
A 180 Ω resistor is in series with a 0.105 H inductor and a 0.400 μF capacitor. (A) Compute the impedance of the circuit at a frequency of f1 = 500 Hz and at a frequency of f2 = 1000 Hz . (B) In each case, compute the phase angle of the source voltage with respect to the current.
A resistor (R = 9.00 ✕ 102 Ω), a capacitor (C = 0.250 μF), and an...
A resistor (R = 9.00 ✕ 102 Ω), a capacitor (C = 0.250 μF), and an inductor (L = 2.30 H) are connected in series across a 2.40 ✕ 102-Hz AC source for which ΔVmax = 1.15 ✕ 102 V. a.) Calculate the impedance of the circuit. b.) Calculate the maximum current delivered by the source. c.) Calculate the phase angle between the current and voltage. d.)  Is the current leading or lagging behind the voltage?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT