Question

The position of a particle as a function of time is given by x(t) = (t...

The position of a particle as a function of time is given by x(t) = (t + 2t^2 + 3t^3) m. What is the average velocity between t = 2.0 s and 5.0 s?

a. 123.0 m/s

b. 132.0 m/s

c. 213.0 m/s

d. 321.0 m/s

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The position of a particle for t > 0 is given by →r (t) = (3.0t...
The position of a particle for t > 0 is given by →r (t) = (3.0t 2 i ^ − 7.0t 3 j ^ − 5.0t −2 k ^ ) m. (a) What is the velocity as a function of time? (b) What is the acceleration as a function of time? (c) What is the particle’s velocity at t = 2.0 s? (d) What is its speed at t = 1.0 s and t = 3.0 s? (e) What is...
The position of a car as a function of time is given by x = (50...
The position of a car as a function of time is given by x = (50 m) + (-5.0 m/s) t + (-10 m/s2) t2. a. What are the initial position, initial velocity, and acceleration of the car? b. What distance does the car travel during the first 1.0 s? c. What is the average velocity of the car between t = 1.0 s and t = 2.0 s?
The position of a car as a function of time is given by x = (50...
The position of a car as a function of time is given by x = (50 m) + (-5.0 m/s) t + (-10 m/s2) t2. a. What are the initial position, initial velocity, and acceleration of car? Answer: initial position ______ m; initial velocity _____ m/s; acceleration ______ m/s2 b. What distance does the car travel during the first 1.0 s? Answer:_____ m c. What is the average velocity of the car between t = 1.0 s and t =...
The position of a particle moving with constant acceleration is given by x(t) = 4t2 +...
The position of a particle moving with constant acceleration is given by x(t) = 4t2 + 3t + 4 where x is in meters and t is in seconds. (a) Calculate the average velocity of this particle between t = 2 seconds and t = 7 seconds. (b) At what time during this interval is the average velocity equal to the instantaneous velocity? (c) How does this time compare to the average time for this interval? a. It is larger....
Suppose that the position vector for a particle is given as a function of time by...
Suppose that the position vector for a particle is given as a function of time by vector r (t) = x(t)î + y(t)ĵ, with x(t) = at + b and y(t) = ct2 + d, where a = 1.90 m/s, b = 1.10 m, c = 0.128 m/s2, and d = 1.12 m. (a) Calculate the average velocity during the time interval from t = 2.05 s to t = 3.75 s. vector v = m/s (b) Determine the velocity...
Suppose the position vector for a particle is given as a function of time by r...
Suppose the position vector for a particle is given as a function of time by r (t) = x(t)î + y(t)ĵ, with x(t) = at + b and y(t) = ct2 + d, where a = 1.60 m/s, b = 1.05 m, c = 0.127 m/s2, and d = 1.20 m. (a) Calculate the average velocity during the time interval from t = 2.10 s to t = 4.25 s. (b) Determine the velocity at t = 2.10 s. dDetermine...
Suppose the position vector for a particle is given as a function of time by r...
Suppose the position vector for a particle is given as a function of time by r (t) = x(t)î + y(t)ĵ, with x(t) = at + b and y(t) = ct2 + d, where a = 1.90 m/s, b = 1.50 m, c = 0.124 m/s2, and d = 1.08 m. (a) Calculate the average velocity during the time interval from t = 1.85 s to t = 4.05 s. (b) Determine the velocity at t = 1.85 s. Determine...
The position of a particle is given by the function x=(5t3−9t2+12)m, where t is in s....
The position of a particle is given by the function x=(5t3−9t2+12)m, where t is in s. At what time does the particle reach its minimum velocity and what is (vx) min??
A particle is moving with the given data. Find the position function of the particle a(t)=...
A particle is moving with the given data. Find the position function of the particle a(t)= 10+3t+3t^2, v(0)= 4, s(2) = 10.
A particle moves with position r(t) = x(t) i + y(t) j where x(t) = 10t2...
A particle moves with position r(t) = x(t) i + y(t) j where x(t) = 10t2 and y(t) = -3t + 2, with x and y in meters and t in seconds. (a) Find the average velocity for the time interval from 1.00 s to 3.00 s. (b) Find the instantaneous velocity at t = 1.00 s. (c) Find the average acceleration from 1.00 s to 3.00 s. (d) Find the instantaneous acceleration at t = 1.00 s.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT