Question

Suppose a 0.250 kg ball is thrown at 13.0 m/s to a motionless person standing on...

Suppose a 0.250 kg ball is thrown at 13.0 m/s to a motionless person standing on ice who catches it with an outstretched arm as shown in Figure 9.31.


Figure 9.31.

(a) Calculate the final linear velocity of the person, given his mass is 76.0 kg: This is the answer: .043 m/s (I know this).  

(b) What is his angular velocity if each arm has a 5.00 kg mass? You may treat his arms as uniform rods of length 0.9 m and the rest of his body as a uniform cylinder of radius 0.170 m. Neglect the effect of the ball on his rotational inertia and on his center of mass, so that it remains in his geometrical center. (I dont know how to get this)  

(c) Compare the initial and final total kinetic energy. (initial energy / final energy)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a 0.250 kg ball is thrown at 13.0 m/s to a motionless person standing on...
Suppose a 0.250 kg ball is thrown at 13.0 m/s to a motionless person standing on ice who catches it with an outstretched arm as shown in Figure 9.31. (a) Calculate the final linear velocity of the person, given his mass is 80.0 kg. (b) What is his angular velocity if each arm has a 5.00 kg mass? You may treat his arms as uniform rods of length 0.9 m and the rest of his body as a uniform cylinder...
A 116 kg football player is running at 8.05 m/s. A hard-thrown 0.410 kg football has...
A 116 kg football player is running at 8.05 m/s. A hard-thrown 0.410 kg football has a speed of 23.5 m/s. (Assume the football player is running in the +x-direction.) Assuming that the football player catches the ball with his feet off the ground with both of them moving horizontally, calculate the following. (a) the final velocity (in m/s) if the ball and player are going in the same direction (Indicate the direction with the sign of your answer. Enter...
A ball with mass of 0.025 kg is thrown horizontally with velocity of 1.5 m/s toward...
A ball with mass of 0.025 kg is thrown horizontally with velocity of 1.5 m/s toward a wall in positive X direction. It collides with the wall, then bounces back to the left with velocity of 1.0 m. The Collison takes 0.015s. What is the total initial momentum? b) What is the total final momentum? c)What is change in momentum? d)What is the impulse? e) What is the average force acting on the wall by the ball during the collision?...
A ball of mass 0.205 kg has a velocity of 1.47 m/s; a ball of mass...
A ball of mass 0.205 kg has a velocity of 1.47 m/s; a ball of mass 0.309 kg has a velocity of -0.396 m/s.They meet in a head-on elastic collision. (a) Find their velocities after the collision. (first ball) (second ball) (b) Find the velocity of their center of mass before and after the collision. (before) (after)
A clay ball with a mass of 0.35 kg has an initial speed of 4.2 m/s...
A clay ball with a mass of 0.35 kg has an initial speed of 4.2 m/s traveling north. It strikes a 1.25 kg clay ball that is traveling towards the other ball at an initial speed of 1.5 m/s. The two ball stick together. What is their final velocity?
A ball of mass 0.198 kg with a velocity of 1.60 î m/s meets a ball...
A ball of mass 0.198 kg with a velocity of 1.60 î m/s meets a ball of mass 0.306 kg with a velocity of -0.408 î m/s in a head-on, elastic collision. (a) Find their velocities after the collision. V1? V2? (b) Find the velocity of their center of mass before and after the collision. Before? After?
A person with mass m1 = 80 kg stands at the left end of a uniform...
A person with mass m1 = 80 kg stands at the left end of a uniform beam with mass m2 = 100 kg and a length L = 4.0 m. Another person with mass m3 = 110 kg stands on the far right end of the beam and holds a medicine ball with mass m4 = 10 kg (assume that the medicine ball is at the far right end of the beam as well). Let the origin of our coordinate...
A 110-kg football player running at 8.00 m/s catches a 0.410-kg football that is traveling at...
A 110-kg football player running at 8.00 m/s catches a 0.410-kg football that is traveling at 25.0 m/s. Assuming the football player catches the ball with his feet off the ground with both of them moving horizontally, calculate: the final velocity if the ball and player are going in the same direction a 7.88 m/s b 8.06 m/s c 8.00 m/s d 890 m/s the loss of kinetic energy in this case. a 59.0 J b 3,690 J c 3,650...
A ball of mass 0.40 kg is fired with velocity 200 m/s into the barrel of...
A ball of mass 0.40 kg is fired with velocity 200 m/s into the barrel of a spring gun of mass 1.5 kg initially at rest on a frictionless surface. The ball sticks in the barrel at the point of maximum compression of the spring. No energy is lost to friction. What fraction of the ball's initial kinetic energy is stored in the spring?
A ball of mass 0.250 kg that is moving with a speed of 5.5 m/s collides...
A ball of mass 0.250 kg that is moving with a speed of 5.5 m/s collides head-on and elastically with another ball initially at rest. Immediately after the collision, the incoming ball bounces backward with a speed of 3.1 m/s . Calculate the velocity of the target ball after the collision. Calculate the mass of the target ball.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT