Question

A Carnot engine uses the expansion and compression of n moles of argon gas, for which...

A Carnot engine uses the expansion and compression of n moles of argon gas, for which CV=(3/2)R. This engine operates between temperatures TC and TH. During the isothermal expansion a→b, the volume of the gas increases from Va to Vb=2Va.

a)Calculate the work done during the isothermal expansion a→b. Express your answer in terms of the variables n, TH, and gas constant R.

b)Calculate the work Wbc done during the adiabatic expansion b→c. Express your answer in terms of the variables n, TC, TH, and gas constant R.

c)For this engine, Wab=Wbc. Find the ratio TC/TH.

d)Find the efficiency of the engine.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Recall the Carnot cycle consists of an isothermal expansion, adiabatic expansion followed by an isothermal compression...
Recall the Carnot cycle consists of an isothermal expansion, adiabatic expansion followed by an isothermal compression and ending with an adiabatic compression. Derive the following useful result for the Carnot cycle: Qc/Qh= - Tc/Th.
An engine based on 50 moles of diatomic gas tries to split the difference between the...
An engine based on 50 moles of diatomic gas tries to split the difference between the Carnot and Otto cycles and invokes a three-step design: 1) an adiabatic expansion from 70 K to 350K, 2) an isothermal compression to the original volume, 3) an isovolumetric increase of temperature back to the original state. a) What is the work done in the adiabatic process? b) What is the work done in the isorthermal process? c) What is the heat exhaust in...
1) A quantity of n moles of oxygen gas (CV = 5R/2 and Cp = 7R/2)...
1) A quantity of n moles of oxygen gas (CV = 5R/2 and Cp = 7R/2) is at absolute temperature T. You increase the absolute temperature to 2T. Find the change in internal energy of the gas, the heat flow into the gas, and the work done by the gas if the process you used to increase the temperature is isochoric. Express your answers in terms of the variables n, R, and T separated by commas. 2) Find the change...
7. 1.55 moles of Argon gas undergo an isothermal reversible expansion from an initial volume of...
7. 1.55 moles of Argon gas undergo an isothermal reversible expansion from an initial volume of 5.00 L to 105. L at 300 K. Calculate the work done during this process using: (a) the ideal gas equation, and (b) the van der Waals equation of state. Van der Waals parameters for Ar are available in the back of the book. Compare the two results, what percentage of the work done by the van der Waals gas arises due to having...
Consider n moles of an ideal monatomic gas being taken once through the Carnot cycle of...
Consider n moles of an ideal monatomic gas being taken once through the Carnot cycle of a thermal engine (motor), consisting of two isothermal processes 1-2, 3-4 at temperatures T1 = 400K and T2 = 300K and two adiabatic processes 2-3 and 4-1. Suppose that all processes are reversible. a) Sketch the graph of the cycle in P-V diagram. b) Calculate the heats of the processes 1-2, 3-4. c) Prove that the efficiency of the engine depends only on the...
N moles of this gas undergoes the following cyclical process composed of four reversible steps: i....
N moles of this gas undergoes the following cyclical process composed of four reversible steps: i. Isovolumetric cooling from state 1 (T1 and P1) to State 2 (T2 and P2); ii. Isothermal expansion from state 2 (T2 and P2) to state 3 (T2 and P3); iii. Isovolumetric heating from state 3 (T2 and P3) back to state 4 (T4 and P4); and iv. Adiabatic compression from state 4 (T4 and P4) to state 1 (T1 and P1). We know that...
A heat engine composed of 1.6 moles of an ideal, monotonic gas is initially at 350...
A heat engine composed of 1.6 moles of an ideal, monotonic gas is initially at 350 K and 1x10^5 Pa. The first step is an isothermal expansion to a pressure of 5x10^4 Pa. Second, the gas is compressed at constant pressure back to the inital volume. Finally the gas returns, at constant volume to the initial state. What is the total work done by the gas during this cycle? What is the efficiency of this cycle?
28 moles of an ideal gas with a molar specific heat at constant volume of cv=3.2R...
28 moles of an ideal gas with a molar specific heat at constant volume of cv=3.2R is initially in state "A" at pressure 73390 Pa and volume 1.0 m3. The gas then expands isobarically to state "B" which has volume 2.6?3m3. The gas then cools isochorically to state "C". The gas finally returns from state "C" to "A" via an isothermal process. What is the adiabatic constant γ for this gas? What is Q during the expansion from "A" to...
The temperature of a sample of dilute argon gas with n = 6.8 moles decreases by...
The temperature of a sample of dilute argon gas with n = 6.8 moles decreases by 196 K during a thermodynamic process. If 35,000 J of heat are extracted from the gas, what is the work done by the gas on its surroundings? _____J
The temperature of a sample of dilute argon gas with n = 3 moles decreases by...
The temperature of a sample of dilute argon gas with n = 3 moles decreases by 380 K. If 33130 J of heat are extracted from the gas, what is the work done by the gas on its surroundings? If you use the universal gas constant to solve this problem, use 8.31 J/(mol*K) rather than 8.314 J/(mol*K).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT