Question

A conducting rod is pulled horizontally with constant force F= 3.40 N along a set of...

A conducting rod is pulled horizontally with constant force F= 3.40 N along a set of rails separated by d= 0.380 m. A uniform magnetic field B= 0.600 T is directed into the page. There is no friction between the rod and the rails, and the rod moves with constant velocity v= 4.80 m/s.

Using Faraday's Law, calculate the induced emf around the loop in the figure that is caused by the changing flux. Assign clockwise to be the positive direction for emf.


The emf around the loop causes a current to flow. How large is that current? (Again, use a positive value for clockwise direction.)

The rate at which the external force does mechanical work must be equal to the rate at which energy is dissipated in the circuit. What is that rate of energy dissipation (power dissipated)?From your previous results, what must be the electrical resistance of the loop? (The resistance of the rails is negligible compared to the resistance of the rod, so the resistance of the loop is constant.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the figure, a metal rod is forced to move with constant velocity along two parallel...
In the figure, a metal rod is forced to move with constant velocity along two parallel metal rails, connected with a strip of metal at one end. A magnetic field of magnitude B = 0.321 T points out of the page. (a) If the rails are separated by 35.4 cm and the speed of the rod is 50.8 cm/s, what is the magnitude of the emf generated in volts? (b) If the rod has a resistance of 21.7 Ω and...
A circular loop with 50 coils is pulled (to the right) from an external magnetic field...
A circular loop with 50 coils is pulled (to the right) from an external magnetic field of 0.8 T into the page. At t=0 the right edge of the loop is at the right edge of the magnetic field. After 0.250 seconds the loop has moved completely out of the magnetic field. Diameter of the coil is 10 cm Find the rate of change in flux through one loop as the loop if the loop is pulled out of the...
As shown in the figure below, a metal rod is pulled to the right at constant...
As shown in the figure below, a metal rod is pulled to the right at constant speed v, perpendicular to a uniform magnetic field directed out of the screen. The bar rides on frictionless metal rails connected through a resistor forming a complete circuit. The length of the bar between the rails is 5 cm, the magnitude of the magnetic field is 0.4 T, the resistor has a value of 10 Ω, and the speed of the bar to the...
A uniform magnetic field is directed into the screen. There are two parallel conducting rails, running...
A uniform magnetic field is directed into the screen. There are two parallel conducting rails, running horizontally, in the field, with a conducting rod on top of the rails. The rails are a distance L apart. The picture shows a force F directed to the right on the rod. The rails are joined at the left by a resistor of resistance R. ​We'll use these values: L = 20 cm; B = 4.0 T; F = 3.2 N; and R...
A conducting rod spans a gap of length L = 0.23 m and acts as the...
A conducting rod spans a gap of length L = 0.23 m and acts as the fourth side of a rectangular conducting loop, as shown in the figure. A constant magnetic field B = 0.55 T pointing into the paper is in the region. The rod is moving under an external force with an acceleration a = At2, where A = 4.5 m/s4. The resistance in the wire is R = 145 Ω. a. Express the magnitude of the magnetic...
Using Faraday’s Law equation, answer the following mathematical questions. A plane circular loop of conducting wire...
Using Faraday’s Law equation, answer the following mathematical questions. A plane circular loop of conducting wire has a radius r = 8m and N = 4 turns. It is located in a uniform magnetic field. The magnetic field’s direction makes a 75° angle with respect to the normal of the loop. The magnitude of magnetic field B increases at a constant rate from B1 = 3.2 T to B2 = 4.7 T in a time interval of t =5s. If...
1- A U-shaped conductor and conducting rod are used to form a slidewire generator. The generator...
1- A U-shaped conductor and conducting rod are used to form a slidewire generator. The generator lies in the xy plane with its conducting rod being parallel to the y axis and sliding along the positive x axis. A uniform magnetic field is applied in the positive z direction. If the velocity of the rod is doubled, what happens to the power dissipated by the generator's resistance? -It is quadrupled - It is doubled -It stays the same -It is...
Problem 10:   A conducting rod spans a gap of length L = 0.186 m and acts...
Problem 10:   A conducting rod spans a gap of length L = 0.186 m and acts as the fourth side of a rectangular conducting loop, as shown in the figure. A constant magnetic field B = 0.65 T pointing into the paper is in the region. The rod is moving under an external force with an acceleration a = At2, where A = 6.5 m/s4. The resistance in the wire is R = 145 Ω. Randomized VariablesL = 0.186 m...
Problem 9:   A rod AB with length L = 0.105 m is lying on a rectangular...
Problem 9:   A rod AB with length L = 0.105 m is lying on a rectangular conducting loop of zero resistance in a magnetic field as shown in the figure. The magnetic field has a constant magnitude B = 0.85 T. The rod is moving to the right with speed v = 0.52 m/s. The resistance on AB is R = 120 Ω. Part (a) Express the change of the magnetic flux going through the loop 1, ΔΦ1, in terms...
The strength of the magnetic field within a solenoid is B = 2.1 × 10-2 T...
The strength of the magnetic field within a solenoid is B = 2.1 × 10-2 T (outside the solenoid B = 0). A smaller, single loop is placed in the solenoid parallel to the plane of each loop in the solenoid. The resistance of the solenoid is 5.9 W, the resistance of the loop is 0.27 W, the diameter of the solenoid is 0.09 m, and the diameter of the loop is 0.05 m. An emf of 12 V is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT