Question

A conducting coil is rotated at constant speed in a uniform magnetic field. The time required...

A conducting coil is rotated at constant speed in a uniform magnetic field. The time required by the loop to make a full rotation is T. The current generated in the coil would increase:

a)if the angular speed of the coil increases

b) if the area of the coil increases

c) if the strength of the magnetic field increases

d) all of the above

e) none of the above

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A conducting loop has a magnetic flux through it. If the loop is rotated will the...
A conducting loop has a magnetic flux through it. If the loop is rotated will the flux through the loop change? Yes, if the rotation axis is not parallel to the magnetic field Only of the rotation axis is parallel to the magnetic field Yes, for any rotation axis Not enough information 2. A bar magnet is held stationary inside a coil of wire that is connected to a meter. What can be said about the current in the coil?...
A coil 4 cm in radius, containing 500 turns, is placed in a uniform magnetic field...
A coil 4 cm in radius, containing 500 turns, is placed in a uniform magnetic field that varies with time according to B = 5.0 -0.1t + .012t^3 – 1.5e-0.3^t Tesla. The coil is connected to a 100 Ω resistor with its plane being perpendicular to the magnetic field. (i) What will be the emf generated in the coil as a function of time? (ii) What will be the current in the resistor at a time t = 5 sec...
1. Is the magnetic pole of the Earth nearest the geographic North Pole a magnetic north...
1. Is the magnetic pole of the Earth nearest the geographic North Pole a magnetic north or a magnetic south pole? 2. A current in a solenoid coil creates a magnetic field inside that coil. The field strength is directly proportional to: a. the coil area b. the current. c. Both A and B are valid choices. d. None of the above choices are valid. 3. A double loop of wire (making 2 turns) is in the xy-plane centered at...
A planar coil of area 40 cm2 is in a uniform magnetic field of 2.3 T...
A planar coil of area 40 cm2 is in a uniform magnetic field of 2.3 T pointing out of the plane. A light bulb of resistance 20 Ω is connected to the coil. The coil is rotated by an angle of 60 degrees such that wire 1 comes towards us and wire 2 goes behind the plane. When viewed from the top, it is rotated in the counter-clockwise direction. a) Find the total charge (in µC) which goes through the...
Consider a closed conducting loop placed in a uniform magnetic field. ... Which of the following...
Consider a closed conducting loop placed in a uniform magnetic field. ... Which of the following will change the magnitude of the induced current: (A) moving the loop with constant velocity, B) moving the loop with constant acceleration, C) rotating the loop with constant angular velocity, D) Rotating the loop with constant angular acceleration. 1) B&D 2) B, C, &D 3) C&D 4 A&C This is in CHegg but the answer is not given in the explaination clearly.
3. A circular coil of wire is rotating in a magnetic field such that it cuts...
3. A circular coil of wire is rotating in a magnetic field such that it cuts through the field's lines. The amplitude of the induced EMF generated in the coil is 7.9 mV. Which of the following could be done to INCREASE the amplitude of the EMF induced in the coil? a. reshape the coil into a square instead of a circle b. rotate the coil such that its axis of rotation is parallel to the magnetic field instead of...
Consider a conducting rod of length 2.50 m immersed in a uniform magnetic field with strength...
Consider a conducting rod of length 2.50 m immersed in a uniform magnetic field with strength 4.00 T and oriented as shown in the figure. Assume that this rod is part of a closed conducting loop and is free to move. If this rod moves with speed 4.00 m/s in the +? − direction, what is the magnitude of the induced emf?
A 149-turn circular coil of radius 2.67 cm is immersed in a uniform magnetic field that...
A 149-turn circular coil of radius 2.67 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. During 0.153 s the magnetic field strength increases from 51.1 mT to 99.3 mT. Find the magnitude of the average EMF, in millivolts, that is induced in the coil during this time interval.
A 140 turn , 2.40 cm diameter coil is at rest in a horizontal plane. A...
A 140 turn , 2.40 cm diameter coil is at rest in a horizontal plane. A uniform magnetic field 60∘ away from vertical increases linearly from 0.740 T to 1.67 T in 0.660 s . (Ans. 44.6 mV) please answer parts A and B, each present new conditions for the same coil. A). If the loops are then re-aligned such that the magnetic field is perpendicular to the plane of the loops (the area vector is parallel with the magnetic...
A 133 turn circular coil of radius 2.77 cm is immersed in a uniform magnetic field...
A 133 turn circular coil of radius 2.77 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. Over an interval of 0.121 s, the magnetic field strength increases from 55.7 mT to 95.9 mT. Find the magnitude of the average emf avgEavg induced in the coil during this time interval, in millivolts. avg=Eavg= ?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT