Question

Suppose that 0.1 kg of ice at an initial temperature of -10°C are put into 0.40...

Suppose that 0.1 kg of ice at an initial temperature of -10°C are put into 0.40 kg of water at an initial temperature of 20°C. Assume the final temperature is 0°C. How many grams of ice will melt? Specific heat capacity of water is 4,200 J/kg/°C. Specific heat of fusion of water is 336,000 J/kg and specific heat capacity of ice is 2,100 J/kg/°C.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An ice cube of mass 0.041 kg and temperature -13 ∘C is heated until it is...
An ice cube of mass 0.041 kg and temperature -13 ∘C is heated until it is now fully melted and at a temperature of 11∘C now. What percentage of the total energy was used to melt the ice? (Assume that there is no heat exchange with any container or the environment.) The specific heat of ice is 2200 J/kg ∘C and the specific heat of water is 4186 J/kg ∘C. The latent heat of fusion of ice is 334000 J/kg...
A small piece of ice (mass = 0.10 kg) at an initial temperature of 0oC is...
A small piece of ice (mass = 0.10 kg) at an initial temperature of 0oC is placed within glass of water, where the water's mass is 0.40 kg and it is at an initial temperature of 30oC.   (a) What is the final temperature of the system when thermal equilibrium is achieved assuming no heat leaks? (b) What is the entropy change of just the ice only while it melts? The latent heat of fusion and specific heats of ice and...
A 2.5 kg metallic block with an initial temperature of 80°C is placed in a styrofoam...
A 2.5 kg metallic block with an initial temperature of 80°C is placed in a styrofoam cup containing 0.1 kg of ice at -15°C. Assuming that no heat escapes from the cup what is the final temperature of the metallic block? The specific heat of the metal is 480 J/kg ∙ K, specific heat of ice is 2090 J/kg ∙ K, the latent heat of fusion of water is 3.33 × 105 J/kg, and the specific heat of water is...
What is the final equilbrium temperature when 40.0 grams of ice at -12.0 degrees C is...
What is the final equilbrium temperature when 40.0 grams of ice at -12.0 degrees C is mixed with 20.0 grams of water at 32 degrees C? The specific heat of ice is 2.10 kJ/kg degrees C, the heat of fusion for ice at 0 degrees C is 333.7 kJ/kg, the specific heat of water 4.186 kJ.kg degrees C, and the heat of vaporization of water at 100 degrees C is 2,256 kJ/kg. A. How much energy will it take to...
A 0.033 kg glass (with c = 840 J/kg oC) contains 0.281 of lemonade which, due...
A 0.033 kg glass (with c = 840 J/kg oC) contains 0.281 of lemonade which, due to the sugar content, has a specific heat of 4,208 J/kg oC. After putting 0.049 kg of ice into the glass and allowing it to completely melt the final equilibrium temperature of the glass of lemonade is found to be 2.9 oC. intial temperature is 0. (a) Calculate the initial temperature of the lemonade and glass. oC Note the following data for ice/water: specific...
How many grams of ice at -13°C must be added to 714 grams of water that...
How many grams of ice at -13°C must be added to 714 grams of water that is initially at a temperature of 83°C to produce water at a final temperature of 11°C. Assume that no heat is lost to the surroundings and that the container has negligible mass. The specific heat of liquid water is 4190 J/kg·C° and of ice is 2050 J/kg·C°. For water the normal melting point is 0.00°C and the heat of fusion is 334 × 103...
How many grams of ice at -14°C must be added to 710 grams of water that...
How many grams of ice at -14°C must be added to 710 grams of water that is initially at a temperature of 81°C to produce water at a final temperature of 12°C. Assume that no heat is lost to the surroundings and that the container has negligible mass. The specific heat of liquid water is 4190 J/kg·C° and of ice is 2050 J/kg·C°. For water the normal melting point is 0.00°C and the heat of fusion is 334 × 103...
An 10 g ice cube at -13˚C is put into a Thermos flask containing 115 cm3...
An 10 g ice cube at -13˚C is put into a Thermos flask containing 115 cm3 of water at 20˚C. By how much has the entropy of the cube-water system changed when a final equilibrium state is reached? The specific heat of ice is 2200 J/kg K and that of liquid water is 4187 J/kg K. The heat of fusion of water is 333 × 103 J/kg.
How many grams of ice at -13°C must be added to 711 grams of water that...
How many grams of ice at -13°C must be added to 711 grams of water that is initially at a temperature of 87°C to produce water at a final temperature of 10°C? Assume that no heat is lost to the surroundings and that the container has negligible mass. The specific heat of liquid water is 4190 J/kg • C° and of ice is 2100 J/kg • C°. For water the normal melting point is 0.00°C and the heat of fusion...
How many joules heat must be added to 2.0 kg of ice at a temperature of...
How many joules heat must be added to 2.0 kg of ice at a temperature of -30 °C to bring it to room temperature 20 °C? (Specific heat capacity of ice is 2100 J/kg °C). (Specific heat capacity of water is 4186 J/kg °C). (Latent heat of water-ice is 3.33x105 J/kg) Group of answer choices 126.52 kJ 959.44 kJ 4293.44 kJ 668.78 kJ
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT