Question

In a TV tube an electric potential difference accelerates electrons from a rest position towards a...

In a TV tube an electric potential difference accelerates electrons from a rest position towards a screen. Just before reaching the screen, the electrons have a wavelength of 1.2×10^−11?. Determine the kinetic energy of the electrons just before they reach the screen. Your final answer should have units of eV.

??=9.11×10^−31??

c = 3.0x10^8 m/s

h = 6.63x10^-34 js

Homework Answers

Answer #1

The deBroglie wavelength of an object of momentum p is

Using p=mev

The kinetic energy is

To convert it to eV we divide the energy in joules by e

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron microscope accelerates electrons from rest through a potential difference of 10 kV. The charge...
An electron microscope accelerates electrons from rest through a potential difference of 10 kV. The charge on an electron is -1.60×10-19C and the mass of an electron is 9.11×10-31kg. (a) If the potential energy of an electron is taken to be 0 initially (at a 0 V plate), what potential energy does it have in Joules after accelerating to the 10 kV plate? (The electrons actually pass through a small hole in this plate before continuing on toward the sample)....
For electron microscope which accelerates electrons from rest through a potential difference of 10 kV. (a)...
For electron microscope which accelerates electrons from rest through a potential difference of 10 kV. (a) If the potential energy of an electron is taken to be 0 initially (at a 0 V plate), what potential energy does it have in Joules after accelerating to the 10 kV plate? (The electrons actually pass through a small hole in this plate before continuing on toward the sample). (b) What speed does the electron reach by the time it reaches the 10...
Through what potential difference ΔV must electrons be accelerated (from rest) so that they will have...
Through what potential difference ΔV must electrons be accelerated (from rest) so that they will have the same wavelength as an x-ray of wavelength 0.145 nm ? Use 6.63×10−34 J⋅s for Planck's constant, 9.11×10−31 kg for the mass of an electron, and 1.60×10−19 C for the charge on an electron. Express your answer using three significant figures.
In a cathode ray tube, electrons initially at rest are accelerated by a uniform electric field...
In a cathode ray tube, electrons initially at rest are accelerated by a uniform electric field of magnitude 4.00 × 105 N/C during the first 4.00 cm of the tube’s length; then they move at essentially constant velocity another 54.0 cm before hitting the screen. Find the speed of the electrons when they hit the screen. How long does it take the electrons to travel the length of the tube?
In a cathode ray tube, electrons initially at rest are accelerated by a uniform electric field...
In a cathode ray tube, electrons initially at rest are accelerated by a uniform electric field of magnitude 4.00 × 105 N/C during the first 6.00 cm of the tube’s length; then they move at essentially constant velocity another 45.0 cm before hitting the screen. a) Find the speed of the electrons when they hit the screen b) How long does it take the electrons to travel the length of the tube?
Q. Electrons are accelerated in a television tube through a potential difference of 9.8 kV. Find...
Q. Electrons are accelerated in a television tube through a potential difference of 9.8 kV. Find the highest frequency and minimum wavelength of the electromagnetic wave emitted, when theses electrons strike the screen of the tube. In which region of the spectrum will these waves lie?   and Q. High energy photons ( y -rays) are scattered from electrons initially at rest. Assume the photons are backscatterred and their energies are much larger than the electron’s rest-mass energy, E >> m0c2...
In a color television tube, electrons are accelerated through a potential difference of  15500 V. With what...
In a color television tube, electrons are accelerated through a potential difference of  15500 V. With what speed do the electrons strike the screen? Give this speed in terms of the speed of light. Hint: The kinetic energy of an electron which has been accelerated through a potential difference of 1 V has a kinetic energy equal to 1 eV. The Range of answers is between  0.230 and 0.310c I tried to use the conservation principle (1/2 mv2=qv), but that didn't get...
1.In a television picture tube, electrons strike the screen after being accelerated from rest through a...
1.In a television picture tube, electrons strike the screen after being accelerated from rest through a potential difference of 19000 V. The speeds of the electrons are quite large, and for accurate calculations of the speeds, the effects of special relativity must be taken into account. Ignoring such effects, find the electron speed just before the electron strikes the screen. 2.During a lightning flash, there exists a potential difference of Vcloud - Vground = 1.0 x 109 V between a...
The old TVs accelerate electrons towards the screen through potential differences of thousands of volts over...
The old TVs accelerate electrons towards the screen through potential differences of thousands of volts over just a few centimeters. Once the electrons are accelerated, they are somehow bent towards different parts of the screen to make up the picture. I once opened one of these TVs to investigate in detail. I found imprinted “5500V” on a part that looked like two capacitor plates, indicating that a potential difference of 5500V is maintained between these capacitor plates. Definitely do not...
An evacuated tube uses a potential difference of ΔV = 0.58 kV to accelerate electrons, which...
An evacuated tube uses a potential difference of ΔV = 0.58 kV to accelerate electrons, which then hit a copper plate and produce X-rays. Write an expression for the non-relativistic speed of these electrons v in terms of e, ΔV, and m, assuming the electrons start from rest. Calculate the non-relativistic speed of these electrons v in m/s. & The temperature near the center of the Sun is thought to be about 15 million degrees Celsius, that is, 1.5 ×...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT