Question

Will a standing wave be formed in a 6.0 m length of stretched string that transmits...


Will a standing wave be formed in a 6.0 m length of stretched string that transmits waves at a speed of 15 m/s if it is driven at
a frequency of:

a) 12 Hz or b) 15 Hz?

Yes for a), no for b)
No for a), yes for b)
No for both a) and b).
Yes for both a) and b).

Homework Answers

Answer #1

Solution)

We know,

λ = v/f


Case 1) 12 Hz wave

wavelength =(15 m/s)/(12 Hz) = 1.25 m

So half a wavelength is 0.625 m, and since 6.0 m is not a whole number of half-wavelengths long. Do, NO standing wave will be formed for it.

========

For a 15 Hz wave

The wavelength will be (15 m/s)/(15 Hz) = 1 m.

So half a wavelength is 0.5 m, and 6.0 m is a whole number of half wavelengths long. Hence standing wave will be formed for it.

============

No for a) and yes for b)

Good luck!:)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A string that is fixed at both ends has a length of 2.79 m. When the...
A string that is fixed at both ends has a length of 2.79 m. When the string vibrates at a frequency of 85.7 Hz, a standing wave with five loops is formed. (a) What is the wavelength of the waves that travel on the string? (b) What is the speed of the waves? (c) What is the fundamental frequency of the string?
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at...
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at successive (that is, modes m and m + 1) frequencies of 38 Hz and 42 Hz respectively. The tension in the string is 720 N. What is the fundamental frequency of the standing wave? Hint: recall that every harmonic frequency of a standing wave is a multiple of the fundamental frequency. What is the speed of the wave in the string? What is the...
A 0.624 m string is clamped at both ends. If the lowest standing wave frequency in...
A 0.624 m string is clamped at both ends. If the lowest standing wave frequency in the string is 326 Hz, what is the wave speed? Group of answer choices 619 m/s 505 m/s 407 m/s 203 m/s 102 m/s
A guitar string with a linear density of 2.0 g/m is stretched between supports that are...
A guitar string with a linear density of 2.0 g/m is stretched between supports that are 60 cm apart. The string is observed to form a standing wave with three antinodes when driven at a frequency of 420 Hz. What are (a) the frequency of the fifth harmonic of this string and (b) the tension in the string?
A string is stretched out horizontally between two xed posts. (a) When set vibra ng at...
A string is stretched out horizontally between two xed posts. (a) When set vibra ng at a frequency of between 200 Hz and 600 Hz (3 SF, no zeroes), the string exhibits a standing wave with ve (5) loops. Make and label a sketch showing the wavelength ? of the waves and the length L of the string when vibra ng in this mode. (b) The string is between 4 and 9 meters long (3 SF, no zeroes). Calculate the...
part 1. A 9.00-m long string sustains a three-loop standing wave pattern as shown. The string...
part 1. A 9.00-m long string sustains a three-loop standing wave pattern as shown. The string has a mass of 45 g and under a tension of 50 N. a. What is the frequency of vibration? b. At the same frequency, you wish to see four loops, what tension you need to use. Part 2. a. Determine the shortest length of pipe, open at both ends, which will resonate at 256 Hz (so the first harmonics is 256Hz). The speed...
Oscillation of a 230 Hz tuning fork sets up standing waves in a string clamped at...
Oscillation of a 230 Hz tuning fork sets up standing waves in a string clamped at both ends. The wave speed for the string is 750 m/s. The standing wave has four loops and an amplitude of 1.6 mm. (a) What is the length of the string? (b) Write an equation for the displacement of the string as a function of position and time. Round numeric coefficients to three significant digits.
A standing wave pattern is created on a string with mass density μ = 3 ×...
A standing wave pattern is created on a string with mass density μ = 3 × 10-4 kg/m. A wave generator with frequency f = 63 Hz is attached to one end of the string and the other end goes over a pulley and is connected to a mass (ignore the weight of the string between the pulley and mass). The distance between the generator and pulley is L = 0.68 m. Initially the 3rd harmonic wave pattern is formed....
A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is...
A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is 0.0901 m, its frequency is 2.27 Hz, and its wavelength is 1.05 m. (a) What is the shortest transverse distance between a maximum and a minimum of the wave? shortest transverse distance: m (b) How much time is required for 57.9 cycles of the wave to pass a stationary observer? time to pass a stationary observer: s (c) Viewing the whole wave at any...
A sound wave resonance is formed in a pipe of length 2.33 m open at both...
A sound wave resonance is formed in a pipe of length 2.33 m open at both ends. Calculate the frquency of the 5 th harmonic. (The temperature is 40 C.) (1 point) 380.28 Hz 98.389 Hz 534.644 Hz 141.484 Hz 613.083 Hz A sound wave resonance is formed in a pipe of length 3.33 m open at one end closed at the other. Calculate the wavelength of the 4 th harmonic. (1 point) 3.524 m 1.903 m 2.63 m 0.982...