Question

A simple harmonic oscillator's position is given by y(t) = (0.860 m)cos(10.2t − 5.65). Find the...

A simple harmonic oscillator's position is given by

y(t) = (0.860 m)cos(10.2t − 5.65).

Find the oscillator's position, velocity, and acceleration at each of the following times. (Include the sign of the value in your answer.)

(a)    

t = 0

position     m
velocity     m/s
acceleration     m/s2


(b)    

t = 0.500 s

position     m
velocity     m/s
acceleration     m/s2


(c)    

t = 2.00 s

position     m
velocity     m/s
acceleration     m/s2

Homework Answers

Answer #1

The position of the oscillator is given by,

The velocity of the oscillator is given by,

The acceleration of the oscilllator is given by,

Now we will be just substituting the values (all the angles are taken as radians)

(a) t = 0,

Position is,

Velocity is,

Acceleration is,

(b) at t = 0.5 s

Position is,

Velocity is,

Acceleration is,

(c) at t = 2 s

Position is,

Velocity is,

Acceleration is,

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A simple harmonic oscillator's position is given by y(t) = (0.950 m)cos(11.8t − 6.15). Find the...
A simple harmonic oscillator's position is given by y(t) = (0.950 m)cos(11.8t − 6.15). Find the oscillator's position, velocity, and acceleration at each of the following times. (Include the sign of the value in your answer.) (a)     t = 0 position       m velocity     m/s acceleration     m/s2 (b)     t = 0.500 s position     m velocity     m/s acceleration     m/s2 (c)     t = 2.00 s position     m velocity     m/s acceleration     m/s2
A simple harmonic oscillator's velocity is given by vy(t) = (0.870 m/s)sin(10.8t − 4.65). Find the...
A simple harmonic oscillator's velocity is given by vy(t) = (0.870 m/s)sin(10.8t − 4.65). Find the oscillator's position, velocity, and acceleration at each of the following times. (Include the sign of the value in your answer.) (a)     t = 0 position     m velocity     m/s acceleration     m/s2 (b)     t = 0.500 s position     m velocity     m/s acceleration     m/s2 (c)     t = 2.00 s position     m velocity     m/s acceleration     m/s2
A harmonic oscillator is described by the function x(t) = (0.350 m) cos(0.490t). Find the oscillator's...
A harmonic oscillator is described by the function x(t) = (0.350 m) cos(0.490t). Find the oscillator's maximum velocity and maximum acceleration. Find the oscillator's position, velocity, and acceleration when t = 1.25 s. (a) oscillator's maximum velocity (in m/s) (b) oscillator's maximum acceleration (m/s2) (c) oscillator's position (in m) when t = 1.25 s (d) oscillator's velocity (in m/s) when t = 1.25 s (e) oscillator's acceleration (in m/s2) when t = 1.25 s
In an engine, a piston oscillates with simple harmonic motion so that its position varies according...
In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression, x = 8.00 cos (3t + pi/4) where x is in centimeters and t is in seconds. (a) At t = 0, find the position of the piston. cm (b) At t = 0, find velocity of the piston. cm/s (c) At t = 0, find acceleration of the piston. cm/s2 (d) Find the period and amplitude of the motion. period...
In an engine, a piston oscillates with simple harmonic motion so that its position varies according...
In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression, x = 7.00 cos(3t + π/7) where x is in centimeters and t is in seconds. (a) At t = 0, find the position of the piston. ____ cm (b) At t = 0, find velocity of the piston. ____ cm/s (c) At t = 0, find acceleration of the piston. ____ cm/s^2 (d) Find the period and amplitude of the...
The function x = (8.0 m) cos[(4πrad/s)t + π/5 rad] gives the simple harmonic motion of...
The function x = (8.0 m) cos[(4πrad/s)t + π/5 rad] gives the simple harmonic motion of a body. At t = 6.9 s, what are the (a) displacement, (b) velocity, (c) acceleration, and (d) phase of the motion? Also, what are the (e) frequency and (f) period of the motion?
The function x = (9.5 m) cos[(6πrad/s)t + π/4 rad] gives the simple harmonic motion of...
The function x = (9.5 m) cos[(6πrad/s)t + π/4 rad] gives the simple harmonic motion of a body. At t = 2.3 s, what are the (a) displacement, (b) velocity, (c) acceleration, and (d) phase of the motion? Also, what are the (e) frequency and (f) period of the motion?
The position of a particle is given in cm by x = (2) cos 9?t, where...
The position of a particle is given in cm by x = (2) cos 9?t, where t is in seconds. (a) Find the maximum speed. 0.565 m/s (b) Find the maximum acceleration of the particle. _______m/s2 (c) What is the first time that the particle is at x = 0 and moving in the +x direction? _______s
1. (1’) The position function of a particle is given by s(t) = 3t2 − t3,...
1. (1’) The position function of a particle is given by s(t) = 3t2 − t3, t ≥ 0. (a) When does the particle reach a velocity of 0 m/s? Explain the significance of this value of t. (b) When does the particle have acceleration 0 m/s2? 2. (1’) Evaluate the limit, if it exists. lim |x|/x→0 x 3. (1’) Use implicit differentiation to find an equation of the tangent line to the curve sin(x) + cos(y) = 1 at...
The position of an object in simple harmonic motion is given by x= (6.88 cm) cos...
The position of an object in simple harmonic motion is given by x= (6.88 cm) cos [(2 pie/0.663 s)t]     (a) What is the object's speed at 0.828 s? cm/s (b) What is the object's maximum speed? cm/s (c) What is the object's speed when -6.88 cm? cm/s
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT