Question

The siren on an ambulance is emitting a sound whose frequency is 2550 Hz. The speed...

The siren on an ambulance is emitting a sound whose frequency is 2550 Hz. The speed of sound is 343 m/s. (a) If the ambulance is stationary and you (the "observer") are sitting in a parked car, what are the wavelength and the frequency of the sound you hear? (b) Suppose that the ambulance is moving toward you at a speed of 26.2 m/s. Determine the wavelength and the frequency of the sound you hear. (c) If the ambulance is moving toward you at a speed of 26.2 m/s and you are moving toward it at a speed of 16.0 m/s, find the wavelength and frequency of the sound you hear.

Homework Answers

Answer #1

a)

Wavelength , = c/f = 343/2550 = 0.135 m

Frequency , f = 2550 Hz

b)

f' = f*c/(v + c)

Here, f' = apparent frequency heard.

f = original frequency

c = speed of sound = 343 m/s

v = speed of the source.

So, f' = 2550*343/(343 - 26.2) = 2761 Hz <------ answer

apparent wavelength, ' = c/f' = 343/2761 = 0.124 m <---- answer

c)

f' = f*(c + v1)/(c - v2)

v1 = 16 m/s

v2 = 26.2 m/s

So, f' = 2550*(343 + 16)/(343 - 26.2 )

= 2890 Hz <------ answer

So, ' = 343/2890 = 0.119 m <------ answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An ambulance has a siren of frequency 880 Hz. You are sitting at a stop light...
An ambulance has a siren of frequency 880 Hz. You are sitting at a stop light as the ambulance passes you, traveling at a constant 22 m/s. If the speed of sound is 343 m/s, what is the change in the frequency that you hear as the ambulance passes you? A.) -56 Hz    B.) -53 Hz     C.) -60 Hz     D.) -116 Hz     E.) -113 Hz
A siren emitting a sound of frequency 1000 Hz moves towards you, and away from a...
A siren emitting a sound of frequency 1000 Hz moves towards you, and away from a cliff at a speed of 25 m/s. a) what is the frequency of sound you heard coming directly to you from the siren? B) what is the frequency of sound you hear reflected from the cliff? (speed of sound = 340 m/s).
Standing at a crosswalk, you hear a frequency of 590 Hz from the siren of an...
Standing at a crosswalk, you hear a frequency of 590 Hz from the siren of an approaching ambulance. After the ambulance passes, the observed frequency of the siren is 497 Hz. Determine the ambulance's speed from these observations. (Take the speed of sound to be 343 m/s.)
You are standing on the sidewalk and hear an ambulance siren at 500 Hz when the...
You are standing on the sidewalk and hear an ambulance siren at 500 Hz when the ambulance is approaching and at 400 Hz when the ambulance is going away from you. How fast is the ambulance moving? (Note: the speed of sound is 343 m/s). a.) 38.1 m/s b.)343 m/s     c.)58.6 m/s d.)49.3 m/s e.)12.2 m/s
The frequency will sound different if we hear a sound source moving relative to us. This...
The frequency will sound different if we hear a sound source moving relative to us. This phenomenon is called the Doppler Effect in Physics. An ambulance sounds a siren at 1515 Hz and passes a cyclist moving at 2.12 m / s. After the ambulance passed, the cyclist heard a siren sound at a frequency of 1501 Hz. The speed of sound in the air is about 343 m / s. What is the speed (speed) of the ambulance in...
A police car with a siren of 300 Hz. is moving toward a warehouse at 30...
A police car with a siren of 300 Hz. is moving toward a warehouse at 30 m/s. What frequency does the driver hear reflected from the warehouse? The speed of sound is 343 m/s.
An ambulance with a 200-Hz siren is moving at 30.0 m/s. Take the speed of sound...
An ambulance with a 200-Hz siren is moving at 30.0 m/s. Take the speed of sound to be 340 m/s. a) What frequencies are observed by a stationary person standing on the sidewalk as the ambulance approaches and after it passes? b) Is this Doppler shift real or just a sensory illusion?
An object is moving at a velocity of 225 m/s, emitting a sound at 343 Hz....
An object is moving at a velocity of 225 m/s, emitting a sound at 343 Hz. The observer is stationary. What is the observed frequency as the source approaches the observer? What is the observed frequency after the source passes the observer?
(1) Suppose an oncoming ambulance moving at 115 km/h emits a steady 810-Hz sound from its...
(1) Suppose an oncoming ambulance moving at 115 km/h emits a steady 810-Hz sound from its siren. Part (a) What frequency, in Hz, is received by a person watching the oncoming ambulance? The speed of sound on this day is 345 m/s. Part (b) What frequency, in Hz, does she observe after the ambulance has passed? (2). In this problem take the speed of sound to be 349 m/s. How fast, in meters per second, does an observer need to...
(a) What frequency (in Hz) is received by a person watching an oncoming ambulance moving at...
(a) What frequency (in Hz) is received by a person watching an oncoming ambulance moving at 106 km/h and emitting a steady 850 Hz sound from its siren? The speed of sound on this day is 345 m/s. Hz (b) What frequency (in Hz) does she receive after the ambulance has passed? Hz
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT