Question

(a) Find the moment of inertia, I, for a rod of length L and mass M...

(a) Find the moment of inertia, I, for a rod of length L and mass M for an arbitrary axis that is at distance of x from its one edge. (b) Now find the moment of inertia when the axis is at one edge. (c) Find the moment of inertia when the axis is in the middle.

Please leave detailed steps

Homework Answers

Answer #1


consider a small length dx from a rod of length L

let O be the mid point of it such on either sides it is having a length of L/2

moment of inertia due to small length be dI

then

dI = rho * dx * x^2

total moment of inertia I = integration of dI = rho * integration of x^2 dx


I = Rho * (X^3)/3 from - L/2 to +L/2

I = rho/3 * (L/2)^3 -(-L/2)^3)

I = rho *L^3/12

as rho = linear mass density = mass/L

I = ML^2/12

----------------------------------


part B

dI - rho *x^2 dx

I = o to L   rho dx x^2

I = rho * )x^3/3) o to l

I = rho * l l^2/3

I = Ml^2/3

----------------------------

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the expression for the moment of inertia of a uniform rod of mass M, and...
Find the expression for the moment of inertia of a uniform rod of mass M, and length L, rotated about one of its ends. Intergral you'll need to perform is given below I = integral of ((r^2)(dm))
find the moment of inertia of a uniform rod (rotated about one end) of mass M...
find the moment of inertia of a uniform rod (rotated about one end) of mass M and length L starting from the definition of moment of inertia PLEASE INCLUDE ANY RELEVANT CALCULUS CONCEPTS
A thin, 1-dimensional, uniform rod of mass M and length L lies on the x axis...
A thin, 1-dimensional, uniform rod of mass M and length L lies on the x axis with one end at the origin. (a) Find its moment of inertia tensor about the origin. (b) Find the moment of inertia tensor if the rod’s center is located at the origin.
Find the moment of inertia about each of the following axes for a rod that has...
Find the moment of inertia about each of the following axes for a rod that has a diameter of d, a length of l, and a mass of m. A) About an axis perpendicular to the rod and passing through its center. B) About an axis perpendicular to the rod and passing through one end. C) About a longitudinal axis passing through the center of the rod.
5) Consider a uniform thin rod with length L. I_1 is the moment of inertia of...
5) Consider a uniform thin rod with length L. I_1 is the moment of inertia of this rod about an axis perpendicular to the rod a quarter length from its center. I_2 is the moment of inertia of the rod with respect to an axis perpendicular to it through its center. which relationship between the two inertia's is correct? a) I_1 = I_2. b) I_1 > I_2. c) I_1 < I_2. d) they could be the same or different depending...
Uniform rod with length 6.6 m and mass 9.2 kg is rotating about an axis passing...
Uniform rod with length 6.6 m and mass 9.2 kg is rotating about an axis passing distance 4 m from one of its ends. The moment of inertia of the rod about this axis (in kg m2) is
A thin, rigid, uniform rod has a mass of 1.40 kg and a length of 2.50...
A thin, rigid, uniform rod has a mass of 1.40 kg and a length of 2.50 m. (a) Find the moment of inertia of the rod relative to an axis that is perpendicular to the rod at one end. (b) Suppose all the mass of the rod were located at a single point. Determine the perpendicular distance of this point from the axis in part (a), such that this point particle has the same moment of inertia as the rod...
Calculate the center of mass of a nonuniform rod of length L, whose linear density is...
Calculate the center of mass of a nonuniform rod of length L, whose linear density is p(x) = p0√x ​and the moment of inertia for this rod when the axis of rotation is located at the lighter end.
A rod of length l=0.8m and mass M= 3.7kg joins two particles with masses m1 =4.5kg...
A rod of length l=0.8m and mass M= 3.7kg joins two particles with masses m1 =4.5kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 a) Calculate the total moment of inertia of the system b) What is...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) angularmomentum a) Calculate the total moment of inertia of the system I...