Question

a) A large 51.8 kg pottery wheel has a radius of 0.74 m, and can be...

a)

A large 51.8 kg pottery wheel has a radius of 0.74 m, and can be considered as a solid cylinder rotating about an axis through its center. How much work must be done on the pottery wheel to increase the rate at which it is spinning from 83.0 rpm (rotations per minute) to 139.0 rpm? Give your answer in J.

Hint: The moment of inertia for a solid cylinder rotating about its center with mass M and radius R is given by: I = 1/2 MR2

b)

A centrifuge rotor has a moment of inertia of 3.127×10-2 kg m2. How much energy, in kJ, is required to bring it from rest to 9.0×103 rpm (revolutions per minute)?

Homework Answers

Answer #1

a)Given,

m = 51.8 kg ; r = 0.74 m ; wi = 83 rpm = 8.7 rad/s ; wf = 139 rpm = 14.6 rad/s

I = 1/2 m R^2

I = 0.5 x 51.8 x 0.74^2 = 14.18 kg-m^2

work done required will be:

W = 1/2 I (wf^2 - 2i^2)

W = 0.5 x 14.18 (14.5^2 - 8.6^2) = 966 J

Hence, W = 966 J

b)Given,

I = 3.127 x 10^-2 kg-m^2 ; w = 9 x 10^3 rpm = 942.5 rad/s

W = 1/2 I (wf^2 - wi^2)

W = 0.5 x 0.03127 x (0 - 942.5^2) = -1.39 x 10^4 J

Hence, W = -1.39 x 10^4 J

(neglect negative sign if only magnitude is needed)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You have a solid metal cylinder of mass M, with a radius of R.  What is its...
You have a solid metal cylinder of mass M, with a radius of R.  What is its moment of inertia? (1/2)MR2 MR2 (2/3)MR2 (2/5)MR2 You have a 5 kg solid metal cylinder with a radius of 2.5 cm.  What is its moment of inertia? 0.00313 kg m2 0.00125 kg m2 0.00208 kg m2 0.00156 kg m2 You have a solid metal sphere of mass M, with a radius of R.  What is its moment of inertia? (2/3)MR2 (2/5)MR2 (1/2)MR2 MR2 You have a...
A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is...
A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 260 N applied to its edge causes the wheel to have an angular acceleration of 0.836 rad/s2. (a) What is the moment of inertia of the wheel? kg · m2
A potter's wheel is a disk that has a mass of 5.0 kg and a radius...
A potter's wheel is a disk that has a mass of 5.0 kg and a radius of 0.5 m. When turned on, a motor spins up the wheel with a constant torque of 7.0 N·m for 10.0 seconds. Note: the moment of inertia of a solid disk is given by 1/2 MR2. Also, there is no translational motion, the wheel simply spins in place. a. [8 pts.] Find the wheel's angular acceleration in radians/sec2 during these 10 s. b. [8...
A 10.0 kg wheel has a diameter of 50.0 cm. How much is the moment of...
A 10.0 kg wheel has a diameter of 50.0 cm. How much is the moment of inertia of the wheel? If the wheel is pressed by an axe with a normal force of 10.0 N, the coefficient of kinetic friction between the axe and the wheel is 0.200. How much torque is the wheel experiencing from the axe (in Nm)? If the wheel was spinning with 300 rpm before the axe touches it, how long does it take for the...
PART 1: You're out in space, on a rotating wheel-shaped space station of radius 688 m....
PART 1: You're out in space, on a rotating wheel-shaped space station of radius 688 m. You feel planted firmly on the floor, due to artificial gravity. The gravity you experience is Earth-normal, that is, g = 9.81 m/s^2. How fast is the space station rotating in order to produce this much artificial gravity? Express your answer in revolutions per minute (rpm). A) 1.140 rpm B) 0.119 rpm C) 82.2 rpm D) 0.684 rpm PART 2: This time, the space...
A grinding wheel is a uniform cylinder with a radius of 6.60 cm and a mass...
A grinding wheel is a uniform cylinder with a radius of 6.60 cm and a mass of 0.530 kg . Calculate its moment of inertia about its center. Calculate the applied torque needed to accelerate it from rest to 1600 rpm in 6.30 s if it is known to slow down from 1600 rpm to rest in 51.0 s .
A bicycle wheel has a mass of 2.0 kg and a radius of 60 cm. With...
A bicycle wheel has a mass of 2.0 kg and a radius of 60 cm. With the wheel initially at rest, a torque of 0.36 N-m is then applied. What is the angular speed of the tire after 5 seconds? The moment of inertia of a wheel is mR2. A. 0.5 rad/s B. 1.0 rad/s C. 1.5 rad/s D. 2.5 rad/s E. 5.0 rad/s
A uniform, 1.0 m radius, 50.0 kg circular wheel (ICM=M R2) spinning at 120 rev/min is...
A uniform, 1.0 m radius, 50.0 kg circular wheel (ICM=M R2) spinning at 120 rev/min is subjected to a variable frictional force F(t) = 20.0[1 - (t/ )2] (in Newtons) applied tangentially at its rim. If the wheel has to stop rotating exactly at the moment the force becomes zero, the value of  must be
A light-weight potter’s wheel, having a moment of inertia of 24 kg*m^2, is spinning freely at...
A light-weight potter’s wheel, having a moment of inertia of 24 kg*m^2, is spinning freely at 40 rpm. The potter drops a small but dense lump of clay onto the wheel, where it sticks a distance 1.2m from the rotational axis. The subsequent angular speed of the wheel and clay is 32 rpm. The axis of the wheel is vertically directed, and the wheel is initially spinning in the counter-clockwise direction when looking down on the wheel from above. After...
A grinding wheel is a uniform cylinder with a radius of 7.50 cm and a mass...
A grinding wheel is a uniform cylinder with a radius of 7.50 cm and a mass of 0.670 kg . Part A Calculate its moment of inertia about its center. Express your answer to three significant figures and include the appropriate units. Part B Calculate the applied torque needed to accelerate it from rest to 1750 rpm in 7.80 s . Take into account a frictional torque that has been measured to slow down the wheel from 1500 rpm to...