Question

1.3 mole of an ideal gas at 300 K is expanded isothermally and reversibly from a...

1.3 mole of an ideal gas at 300 K is expanded isothermally and reversibly from a volume V to volume 4V. What is the change in entropy of the gas, in J/K?

Homework Answers

Answer #1

Summary: First I calculated work done in the process. Then by applying first law of Thermodynamics I calculated change in heat in the process. Then change in entropy is equal to the ratio of change in heat to the temperature.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose 0.540 mol of an ideal gas is isothermally and reversibly expanded in the four situations...
Suppose 0.540 mol of an ideal gas is isothermally and reversibly expanded in the four situations given below. What is the change in the entropy of the gas for each situation? Situation (a) (b) (c) (d) Temperature (K) 250 350 400 450 Initial volume (cm3) 0.200 0.200 0.450 0.350 Final volume (cm3) 0.900 0.700 1.20 1.25 deltaS (J/K) _____ _____ _____ _____
One mole of an ideal gas at 300 K is expanded adiabatically and reversibly from 20...
One mole of an ideal gas at 300 K is expanded adiabatically and reversibly from 20 atm to 1 atm. What is the final temperature of the gas, assuming Cv= 3/2R. Question 1 options: a) 400 K b) 250 K c)156 K d)90.5 K
One mole of an ideal gas expands reversibly and isothermally from 10. bar to 1.0 bar...
One mole of an ideal gas expands reversibly and isothermally from 10. bar to 1.0 bar at 298.15K. (i)Calculate the values of w, q, ∆U and ∆H? (ii)Calculate w if the gas were to have expanded to the same final state against a constant pressure of 1 bar.
1 mole of ideal gas at 270C is expanded isothermally from an initial pressure of 3...
1 mole of ideal gas at 270C is expanded isothermally from an initial pressure of 3 atm to afinal pressure of 1 atm in two ways: (a) reversibly and (b) against a constant external pressure of 1 atm. Calculate q, w, ΔU, ΔH and ΔS for each path.
One mole of an ideal gas is expanded isothermally and irreversibly from an initial volume of...
One mole of an ideal gas is expanded isothermally and irreversibly from an initial volume of 10.0 L to a final volume of 20.0 L at a pressure equal to the final pressure and a temperature of 500 K. Calculate the value of w. Calculate the values of q. Calculate the value of ΔS (system). Calculate the values of delta S (surroundings). Calculate the values of ΔS (total).
In this problem, 1.10 mol of an ideal gas at 300 K undergoes a free adiabatic...
In this problem, 1.10 mol of an ideal gas at 300 K undergoes a free adiabatic expansion from V1 = 12.3 L to V2 = 22.2 L. It is then compressed isothermally and reversibly back to its original state. (a) What is the entropy change of the universe for the complete cycle? J/K   (b) How much work is lost in this cycle? J
One mole of ideal gas initially at 300 K is expanded from an initial pressure of...
One mole of ideal gas initially at 300 K is expanded from an initial pressure of 10 atm to a final pressure of 1 atm. Calculate ΔU, q, w, ΔH, and the final temperature T2 for this expansion carried out according to each of the following paths. The heat capacity of an ideal gas is cV=3R/2. 1. A reversible adiabatic expansion.
A monatomic ideal gas containing 7.95 moles at a temperature of 235 K are expanded isothermally...
A monatomic ideal gas containing 7.95 moles at a temperature of 235 K are expanded isothermally from a volume of 1.23 L to a volume of 4.44 L. a) Sketch a P vs.V graph. b) Calculate the work done by the gas. c) Calculate the heat flow into or out of the gas. d) If the number of moles is doubled, by what factors do your answers to parts (b) and (c) change? Explain.
1 mole methane gas (NOT ideal gas) isothermally expands from initial pressure of 5 bar to...
1 mole methane gas (NOT ideal gas) isothermally expands from initial pressure of 5 bar to 1bar at 50oC. Estimate the ENTROPY change (?S) for the gas using Lee/Kesler generalized correlation tables
1. One mole of an ideal monatomic gas is confined to a rigid container. When heat...
1. One mole of an ideal monatomic gas is confined to a rigid container. When heat is added reversibly to the gas, its temperature changes from 300 K to 350K. (a) How much heat is added? (b) What is the change in entropy of the gas?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT