Question

A large fish has a mass of 25.0 kg and swims at 1.00 m/s toward and...

A large fish has a mass of 25.0 kg and swims at 1.00 m/s toward and then swallows a smaller fish that is not moving. If the smaller fish has a mass of 1.00 kg.

a) What is the speed of the larger fish immediately after it finishes lunch?

b) Is this an elastic or inelastic collision?

c) Is energy conserved in this collision?

Homework Answers

Answer #1

Consider the mass of the large fish as M and the small fish as m. Also consider that the initial velocity of the large fish as u and the final velocity as v.
Initial momentum of the large fish, Pi = Mu
= 25 x 1 = 25 kg m/s
Final momentum of the large + small fish, Pf = (M + m) v
= (25 + 1) v = 26 v

Using the conservation of momentum, Pi = Pf
25 = 26 v
v = 25/26
= 0.96 m/s

b)
Since the kinetic energy is not conserved, the collision is inelastic.

c)
Energy is not conserved as seen in part b.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest...
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest If the collision is perfectly elastic, what is the speed of the masses just after the collision? Is the kinetic energy conserved?
truck with a mass of 1840 kg and moving with a speed of 17.0 m/s rear-ends...
truck with a mass of 1840 kg and moving with a speed of 17.0 m/s rear-ends a 732 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. (a) Calculate the initial momentum of the truck (in kg m/s). kg m/s (b) Calculate the final velocities (in m/s) for the truck and the car. vtf = m/s vcf...
A 5 kg block with a speed of 3.0 m/s collides with a 10 kg block...
A 5 kg block with a speed of 3.0 m/s collides with a 10 kg block that has a speed of 2.0 m/s in the same direction. After the collision, the 10 kg block travels in the original direction with a speed of 2.5 m/s. (a) Draw (i) a before/after sketch, (ii) momentum & energy bar diagrams of the situation, and (iii) identify the collision as elastic, inelastic and completely inelastic. (b) what is the velocity of the 5.0 kg...
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides...
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides with another ball with mass m = 2.5 kg which is initially stationary. There is no other force such as gravity acting on the two balls. After the collision, both balls move at angle θ=30 degrees relative to initial direction of motion of the ball with mass M = 5 kg. a) What are the speeds of the two balls after the collision? b)...
A large truck (mass 2,589 kg and speed 8.1 m/s) and a small car (mass 1,166...
A large truck (mass 2,589 kg and speed 8.1 m/s) and a small car (mass 1,166 kg and speed 23.8 m/s) going in opposite directions collide head on. After the collision the two vehicles stick together. Calculate their speed immediately after the collision.
A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before...
A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before colliding with a second glider of mass m2 = 4 kg, moving with velocity v2i = -4 m/s. After the collision the first glider has a velocity of v1f = -1 m/s. This collision is Elastic Partially inelastic Totally inelastic Impossible A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before colliding with a second glider of mass...
Question1) A car moving North at 12 m/s strikes a stationary car of equal mass. The...
Question1) A car moving North at 12 m/s strikes a stationary car of equal mass. The first car moves off after the collision at an angle of 30° East of North with a speed of 8.0 m/s. a.   What is the velocity of the struck car just after the collision? b.   Show that the collision is inelastic. c.   Explain how dents, skid marks, etc. show that kinetic energy has been lost. d.   If the collision were perfectly elastic, what would...
A 1,200-kg car traveling initially with a speed of 25.0 m/s crashes into the rear of...
A 1,200-kg car traveling initially with a speed of 25.0 m/s crashes into the rear of a 9,000-kg truck moving in the same direction at 20.0 m/s. The velocity of the car after the collision is 17.5 m/s. a) What is the velocity of the truck right after the collision? b) How much mechanical energy is lost in the collision?
On a frictionless horizontal air table, puck A (with mass 0.252 kg ) is moving toward...
On a frictionless horizontal air table, puck A (with mass 0.252 kg ) is moving toward puck B (with mass 0.368 kg), which is initially at rest. After the collision, puck A has velocity 0.121 m/s to the left, and puck B has velocity 0.651 m/s to the right. What was the speed vAi of puck A before the collision? = 0.830 m/s Calculate  ?K, the change in total kinetic energy of the system that occurs in the collision. = ?
A ball with mass of 0.025 kg is thrown horizontally with velocity of 1.5 m/s toward...
A ball with mass of 0.025 kg is thrown horizontally with velocity of 1.5 m/s toward a wall in positive X direction. It collides with the wall, then bounces back to the left with velocity of 1.0 m. The Collison takes 0.015s. What is the total initial momentum? b) What is the total final momentum? c)What is change in momentum? d)What is the impulse? e) What is the average force acting on the wall by the ball during the collision?...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT