Question

Block 1 of mass m1 slides along a frictionless floor and into a one-dimensional elastic collision...

Block 1 of mass m1 slides along a frictionless floor and into a one-dimensional elastic collision with stationary block 2 of mass m2 = 8m1. Prior to the collision, the center of mass of the two-block system had a speed of 4.6 m/s.

What is the speed of block 2 after the collision (in m/s)?

Sample submission: 8.9

Homework Answers

Answer #1

Mass of the first block = m1

Mass of the second block, m2 = 8*m1

Velocity of center of mass before collision, Vcm = 4.6 m/s

Initial velocity of the first block = v1

Initial velocity of the second block, v2 = 0

Velocity of center of mass, Vcm = ( m1*v1 + m2*v2 ) / ( m1 + m2 )

(m1 + m2 ) Vcm = m1*v1 + m2*v2

(m1 + 8 *m1) * 4.6 = m1 * v1 + m2 * 0

41.4 *m1 = m1 v1

So, v1 = 41.4 m/s

In the case of elastic collision,

Speed of second block after collision is given by

v2' = [ 2 m1 / ( m1 + m2 ) ] * v1 + [ ( m2 - m1 ) / ( m1 + m2 ] * v2

v2' = [ 2 * m1 / ( m1 + 8*m1 ) ] * 41.4 + 0

v2' = ( 2 m1 / 9*m1 ) * 41.4

v2' = 9.2 m/s

Speed of the second block after collision, v2' = 9.2 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Speed amplifier. Block 1 of mass m1 slides along an x axis on a frictionless floor...
Speed amplifier. Block 1 of mass m1 slides along an x axis on a frictionless floor with a speed of Then it undergoes a one-dimensional elastic collision with stationary block 2 of mass m2 = 0.500m1. Next, block 2 undergoes a onedimensional elastic collision with stationary block 3 of mass m3 = 0.500m2. (a) What then is the speed of block 3? (b) Are the kinetic energy, and the momentum of block 3 greater than, less than, or the same...
Block 1, with mass m1 and speed 5.4 m/s, slides along an x axis on a...
Block 1, with mass m1 and speed 5.4 m/s, slides along an x axis on a frictionless floor and then undergoes a one-dimensional elastic collision with stationary block 2, with mass m2 = 0.65m1. The two blocks then slide into a region where the coefficient of kinetic friction is 0.56; there they stop. How far into that region do (a) block 1 and (b) block 2 slide?
block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height...
block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height h and then collides with stationary block 2, which has mass m2 = 3m1 . The collision is an elastic one. After the collision, block 2 slides into a friction-filled region where the coefficient of kinetic friction is 0.5 and comes to a stop through a distance d = 10 m in that region. What is the height h?
Object 1, with mass m1 and speed 5.3 m/s, slides along on a frictionless ice rink...
Object 1, with mass m1 and speed 5.3 m/s, slides along on a frictionless ice rink and then undergoes a one-dimensional elastic collision with a standstill object 2, with mass m2 = 0.44m1. The two objects then slide into a region where the coefficient of kinetic friction is 0.56; there they stop. How far into that region do (a) object 1 and (b) object 2 slide? (c) Assume the collision is inelastic, and that the objects stick together. How far...
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with speed v1 = 13.0 m/s . It collides with block 2, of mass m2 = 39.0 kg , which was initially at rest. The blocks stick together after the collision. Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the two-block system's...
Block 1, of mass m1 = 1.70 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 1.70 kg , moves along a frictionless air track with speed v1 = 29.0 m/s . It collides with block 2, of mass m2 = 59.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the...
Block 1, of mass m1 = 5.30 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 5.30 kg , moves along a frictionless air track with speed v1 = 31.0 m/s . It collides with block 2, of mass m2 = 51.0 kg , which was initially at rest. The blocks stick together after the collision. A.Find the magnitude pi of the total initial momentum of the two-block system. B.Find vf, the magnitude of the final velocity of the two-block system. C. What is the change ΔK=Kfinal−Kinitial in the two-block...
Block 1, of mass m1 = 9.70 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 9.70 kg , moves along a frictionless air track with speed v1 = 27.0 m/s . It collides with block 2, of mass m2 = 55.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Part A: Find the magnitude pi of the total initial momentum of the two-block system. Part B: Find vf, the magnitude of the final velocity of the two-block system. Part C: What...
A.) A block of mass 1.12 kg is placed on a frictionless floor and initially pushed...
A.) A block of mass 1.12 kg is placed on a frictionless floor and initially pushed northward, whereupon it begins sliding with a constant speed of 4.23 m/s. It eventually collides with a second, stationary block, of mass 3.60 kg, head-on, and rebounds back to the south. The collision is 100% elastic. What will be the speeds of the 1.12-kg and 3.60-kg blocks, respectively, after this collision? Multiple choice 2.22 m/s and 2.01 m/s 2.01 m/s and 2.22 m/s 1.71...
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right...
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides inelastically with an initially stationary block of mass m2=18.0 kg. The two objects become stuck together. Find the final velocity of the two blocks. B) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides elastically with an initially stationary block of mass m2=18.0 kg. After the collision, block m2 is moving to the right...