Question

When a cue ball strikes the 8-ball, we can assume that the collision is elastic. An...

When a cue ball strikes the 8-ball, we can assume that the collision is elastic. An 8-ball has a mass of 0.160 kg, and we have made a special cue ball, with a lead core, to have a mass that is 3 times as much as the 8-ball's mass, or 0.480 kg. Let's say this heavy cue ball, initally moving at 1.5 m/s, strikes the 8-ball, and the 8-ball's subsequent velocity is in the same direction as the initial velocity of the cue ball. In other words, the two balls make a one dimensional elastic collision.

Homework Answers

Answer #1

If you have any doubts please ask in comment box

*Here veocity after collision is unknown

To find v1 and V2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A cue ball traveling at 4.25 m/s makes a glancing, elastic collision with a target ball...
A cue ball traveling at 4.25 m/s makes a glancing, elastic collision with a target ball of equal mass that is initially at rest. The cue ball is deflected so that it makes an angle of 30.0° with its original direction of travel. (a) Find the angle between the velocity vectors of the two balls after the collision. ° (b) Find the speed of each ball after the collision. cue ball     m/s target ball     m/s
A cue ball traveling at 8.0 m/s makes a glancing, elastic collision with a target ball...
A cue ball traveling at 8.0 m/s makes a glancing, elastic collision with a target ball of equal mass that is initially at rest. The cue ball is deflected so that it makes an angle of 30° with its original direction of travel. (a) Find the angle between the velocity vectors of the two balls after the collision. _____° (b) Find the speed of each ball after the collision. cue ball ____m/s target ball _____m/s
A cue ball traveling at 4.23 m/s makes a glancing, elastic collision with a target ball...
A cue ball traveling at 4.23 m/s makes a glancing, elastic collision with a target ball of equal mass that is initially at rest. The cue ball is deflected so that it makes an angle of 30.0° with its original direction of travel. (a) Find the angle between the velocity vectors of the two balls after the collision. ______° (b) Find the speed of each ball after the collision. cue ball ___ m/s target ball ___ m/s SHOW ALL WORK!
Example for perfectly inelastic collision A 2 kg ball which is moving at a speed of...
Example for perfectly inelastic collision A 2 kg ball which is moving at a speed of 10 m/s strikes a 2 kg ball which is at rest. What is the speed of the balls after the collision. What is the momentum. what is the center of mass. Example for totally elastic collision A 2 kg ball which is moving at a speed of 10 m/s strikes a 2 kg ball which is at rest. What is the speed of the...
7. We found that if a cue ball, rolling without slipping at speed v0, strikes an...
7. We found that if a cue ball, rolling without slipping at speed v0, strikes an identical, stationary billiard ball head-on, eventually both balls will roll without slipping. The balls are uniform solid spheres, each of mass m, radius r, and moment of inertia I =2/5 m r^2 about its center. The final speed of the target ball is 5/7 *v0 ; that of the cue ball is 2/7 v0. Calculate the total fraction of the initial kenetic energy of...
A billiard ball moving at 5.80 m/s strikes a stationary ball of the same mass. After...
A billiard ball moving at 5.80 m/s strikes a stationary ball of the same mass. After the collision, the first ball moves at 4.97 m/s, at an angle of 31.0° with respect to the original line of motion. (a) Find the velocity (magnitude and direction) of the second ball after collision. ______ m/s ° (with respect to the original line of motion, include the sign of your answer; consider the sign of the first ball's angle)(b) Was the collision inelastic...
Two rubber balls undergo an elastic collision. Ball 1 has a mass of 10 kg and...
Two rubber balls undergo an elastic collision. Ball 1 has a mass of 10 kg and an initial velocity of 5 m/s in the positive x direction. Ball 2 has a mass of 10 kg and is stationary.   What is the final velocity of the two balls, v1f, and v2f?
3. Two balls collided on a smooth horizontal surface. Assume the collision is elastic, please find...
3. Two balls collided on a smooth horizontal surface. Assume the collision is elastic, please find the velocities after collision. We know the mass of ball 1 is 5.0 kg, ball 2 is 1.0kg. Before collision ball 1 is at rest and ball 2 has a velocity of 3.0m/s.
A dark blue ball moving with 55 m/s strikes a light red stationary ball of identical...
A dark blue ball moving with 55 m/s strikes a light red stationary ball of identical mass. After the collision the blue ball moves at 45 m/s, at an angle ? = 20? with respect to the original line of motion. (a) Find the velocity of the red ball after the collision, and nd the an- gle ?. (b) Is the collision elastic or in- elastic? - you must show a calculation to get marks for this question. (c) (1...
Question1) A car moving North at 12 m/s strikes a stationary car of equal mass. The...
Question1) A car moving North at 12 m/s strikes a stationary car of equal mass. The first car moves off after the collision at an angle of 30° East of North with a speed of 8.0 m/s. a.   What is the velocity of the struck car just after the collision? b.   Show that the collision is inelastic. c.   Explain how dents, skid marks, etc. show that kinetic energy has been lost. d.   If the collision were perfectly elastic, what would...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT