Question

A butterfly is perched on a horizontal length of current-carrying wire. The wire is oriented at...

A butterfly is perched on a horizontal length of current-carrying wire. The wire is oriented at right angles to a uniform magnetic field that is just strong enough to support the weight of the butterfly and the wire. The butterfly has a mass of 1.5 g and the wire has a mass of 5 g and a length of 10 cm. If the magnitude of the current is 1.6 A directed to the left, what is the magnitude of the magnetic field and which way does it point?

0.16T, outwards
0.16T, inwards
0.25T, outwards
0.40T, inwards
0.40T, outwards
None of these

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A horizontal current-carrying wire that is perpendicular to the plane of the paper is placed in...
A horizontal current-carrying wire that is perpendicular to the plane of the paper is placed in a uniform magnetic field of magnitude 2.8 mTmT that is parallel to the plane of the paper and points down. At the distance 1.0 cmcm to the right of the wire, the total magnetic field is zero. A. What is the direction of the current in the wire if the zero point is 0.4  to the left of the wire? Into the page. Out of...
A 1.8 m length of wire carrying 4.6 A of current toward the south is oriented...
A 1.8 m length of wire carrying 4.6 A of current toward the south is oriented horizontally. At that point on the Earth's surface, the dip angle of the Earth's magnetic field makes an angle of 46 to the wire. Estimate the magnitude of the magnetic force on the wire due to the Earth's magnetic field of 5.5×10−5T5.5×10−5T at this point. Express your answer using two significant figures.
A current carrying wire is in the shape of an equilateral triangle of edge length 5.0...
A current carrying wire is in the shape of an equilateral triangle of edge length 5.0 cm. The triangle lies in the z = 0 plane. The wire carries a current of 2.6 A. (a) What is the magnitude of the torque on the wire if it is in a region with a uniform magnetic field of magnitude 0.32 T that points in the +z direction? ___ N·m (b) What is the magnitude of the torque on the wire if...
A long, straight wire carrying 1.5 A of current to the left is placed above a...
A long, straight wire carrying 1.5 A of current to the left is placed above a large, flat sheet through which the current per unit width is 4.0 A/m to the left. Part A What is the magnitude of the magnetic force exerted on each 1.0-m length of the wire? FB/? = N/m   Part B What is the direction of the magnetic force? The magnetic force is downward. The magnetic force is directed to the right. The magnetic force is...
A current-carrying wire is in the shape of a square of edge length 5.0 cm. The...
A current-carrying wire is in the shape of a square of edge length 5.0 cm. The square lies in the z = 0 plane. The wire carries a current of 2.1 A. (a) What is the magnitude of the torque on the wire if there is a uniform magnetic field of magnitude 0.28 T in the +z direction? (b) What is the magnitude of the torque if the field is in the +x direction?
A current carrying wire is in the shape of an equilateral triangle of edge length 4...
A current carrying wire is in the shape of an equilateral triangle of edge length 4 cm. The triangle lies in the z = 0 plane. The wire carries a current of 2.2 A. 1) What is the magnitude of the torque on the wire if it is in a region with a uniform magnetic field of magnitude 0.32 T that points in the +z direction? N·m You currently have 0 submissions for this question. Only 3 submission are allowed....
A wire 2.80 m in length carries a current of 4.20 A in a region where...
A wire 2.80 m in length carries a current of 4.20 A in a region where a uniform magnetic field has a magnitude of 0.240 T. Calculate the magnitude of the magnetic force on the wire assuming the following angles between the magnetic field and the current. (a)60.0 degrees (b)90.0 degrees (c)120 degrees
Consider a straight piece of copper wire of length 2 m and diameter 8.5 mm that...
Consider a straight piece of copper wire of length 2 m and diameter 8.5 mm that carries a current I = 9 A. There is a magnetic field of magnitude B directed perpendicular to the wire, and the magnetic force on the wire is just strong enough to “levitate” the wire (i.e., the magnetic force on the wire is equal to its weight). Find B. Hint: The density of copper is 9000 kg/m3 .
Consider a straight piece of copper wire of length 7 m and diameter 3.5 mm that...
Consider a straight piece of copper wire of length 7 m and diameter 3.5 mm that carries a current I = 5.5 A. There is a magnetic field of magnitude B directed perpendicular to the wire, and the magnetic force on the wire is just strong enough to “levitate” the wire (i.e., the magnetic force on the wire is equal to its weight). Find B. Hint: The density of copper is 9000 kg/m3 .
A long horizontal wire carrying a current of 300A is held in place above another horizontal...
A long horizontal wire carrying a current of 300A is held in place above another horizontal wire with a current of 200A in the opposite direction. If the top wire is allowed to fall under gravity, determine the distance (in centimeters) from the fixed wire at which the acceleration of the top wire goes to zero. Assume that the top wire has a mass per unit length of 55 g/m.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT