Question

Steam enters a control volume operating at steady state at 3 bar and 160 ◦ C...

Steam enters a control volume operating at steady state at 3 bar and 160 ◦ C with a volumetric flow rate of 0.5 m3 /s. Saturated liquid leaves the control volume through exit #1 with a mass flow rate of 0.1 kg/s, and saturated vapor leaves through exit #2 at 1 bar with a velocity of 5 m/s. Determine the area of exit #2, in m2 .

Homework Answers

Answer #1

superheated water vapor tables at 3Bar and 160 degrees:

Volume: V1: 0.482281 m^3/kg

superheated water vapor tables at 1Bar and 160 degrees:

Volume: V1: 0.880277 m^3/kg

Mass flow rate = Volumetric flow rate / volume = (0.5 m3 /s) / (0.48228 m^3/kg) = 1.024 kg / s

Of this mass 0.1 Kg/s is lost throughg saturated liquid

so, Mass flow fate coming out of exit 2 = 1.024 - 0.1 = 0.924 Kg/s

Again, Mass flow rate = Volumetric flow rate / volume = (Area * velocity) / volume

==> 0.924 Kg / s = Area * (5 m/s) / (0.880277 m^3/kg )

==> Area = 0.162 m^2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A feedwater heater operating at steady state has two inlets and one exit. At inlet...
1. A feedwater heater operating at steady state has two inlets and one exit. At inlet 1, water vapor enters at p1 = 7 bar, T1 = 200oC with a mass flow rate of 40 kg/s. At inlet 2, liquid water at p2 = 7 bar, T2 = 40oC, density = 992.260 kg/m3 enters through an area A2 = 25 cm2. Liquid water at 7 bar with a density of 902.527 kg/m3 exits at exit 3 with a volumetric flow...
13)  A turbine, operating under steady-flow conditions, receives 5000 kg of steam per hour. The steam enters...
13)  A turbine, operating under steady-flow conditions, receives 5000 kg of steam per hour. The steam enters the turbine at a velocity of 3000 m/min, an elevation of 5 m and a specific enthalpy of 2787 kJ/kg. It leaves the turbine at a velocity of 6000 m/min, an elevation of 1 m and a specific enthalpy of 2259 kJ/kg. Heat losses from the turbine to the surroundings amount to 16736 kJ/h. Determine the power output of the turbine. 14) 12 kg...
A mixing chamber has 2 inlets, first, steam water enters at 12 bar and 1173.15 K...
A mixing chamber has 2 inlets, first, steam water enters at 12 bar and 1173.15 K , then, saturated liquid enters at 12 bar and 80 kg/min. The exit conditions are 12 bar and 120 kg/min. Obtain the mass flow rate (kg/s) at which steam water enters, the temperature at the exit (C°) and the quality of substance at the exit. Ignore the changes of kinetic and potencial energy.
a mixing chamber has 2 inlets, first, steam water enters at 12 bar and 1173.15 K...
a mixing chamber has 2 inlets, first, steam water enters at 12 bar and 1173.15 K , then, saturated liquid enters at 12 bar and 80 kg/min. The exit conditions are 12 bar and 120 kg/min. Obtain the mass flow rate (kg/s) at which steam water enters, the temperature at the exit (C°) and the quality of substance at the exit. Ignore the changes of kinetic and potencial energy.
Steam at 250oC and 1 MPa enters a compressor at a steady rate of 2 m3...
Steam at 250oC and 1 MPa enters a compressor at a steady rate of 2 m3 /s with a velocity of 0.1 m/s. The device uses 6500 kJ/s of energy to compress the steam to a temperature of 500oC and a pressure of 4 MPa. Assuming that this device is adiabatic and that you can ignore potential energy changes, calculate the steam velocity and mass flow rate at the exit of the compressor.
Steam enters a nozzle operating at a pressure of 30 [bar] and a temperature of 320...
Steam enters a nozzle operating at a pressure of 30 [bar] and a temperature of 320 [◦C] with negligible velocity. The steam exits the nozzle at a pressure of 15 [bar] and a velocity of 10 [m/s]. The mass flow rate is 2.5 [kg/s]. Assume the nozzle is well insulated. Determine the exit temperature of the steam.
Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity...
Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity of 10 m/s and exits at 4.5 bar with a quality of 95%. Heat transfer from the pipe to the surroundings at 291K takes place at an average outer surface temperature of 400 K. For operation at steady state, determine (a) the velocity at the exit, in m/s. (b) the rate of heat transfer from the pipe, in kW.? (c) the rate of entropy...
Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity...
Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity of 10 m/s and exits at 4.5 bar with a quality of 95%. Heat transfer from the pipe to the surroundings at 291K takes place at an average outer surface temperature of 400 K. For operation at steady state, determine (a) the velocity at the exit, in m/s. (b) the rate of heat transfer from the pipe, in kW.? (c) the rate of entropy...
Steam at 6 MPA, 600°C, enters a well-insulated turbine operating at steady state and exits at...
Steam at 6 MPA, 600°C, enters a well-insulated turbine operating at steady state and exits at 0.1 bar. The isentropic efficiency of the turbine is 94.7%. Assuming the kinetic and potential energy effects to be negligible, determine: (a) Work output, in kJ/kg, (b) The temperature at the exit of the turbine, in °C, and (c) The rate of entropy production within the turbine, in kJ/K per kg of steam flowing through the turbine. (All steps required – Given/Find/Schematic/Engineering Model/Analysis) THANK...
Refrigerant-134a enters a diffuser steadily as saturated vapour at 600 kPa with a velocity of 160...
Refrigerant-134a enters a diffuser steadily as saturated vapour at 600 kPa with a velocity of 160 m/s, and it leaves at 700 kPa and 40°C. The refrigerant is gaining heat at a rate of 2 kJ/s as it passes through the diffuser : determine (a- the exit velocity (b- the mass flow rate of the refrigerant. If the exit area is twice the inlet area (A2=2A1),