Question

A physicist uses a cylindrical metal can 0.270 mm high and 0.090 mm in diameter to...

A physicist uses a cylindrical metal can 0.270 mm high and 0.090 mm in diameter to store liquid helium at 4.22 KK; at that temperature the heat of vaporization of helium is 2.09×104J/kg2.09×104J/kg. Completely surrounding the metal can are walls maintained at the temperature of liquid nitrogen, 77.3 KK, with vacuum between the can and the surrounding walls.

How much helium is lost per hour? The emissivity of the metal can is 0.200. The only heat transfer between the metal can and the surrounding walls is by radiation.

Homework Answers

Answer #1

Given that cylinder consists of liquid helium at 4.22K and surronding temperature are maintained by liquid nitrogen

The heat emitided due to radiation is used for helium lost.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A physicist uses a cylindrical metal can 0.260 m high and 0.070 m in diameter to...
A physicist uses a cylindrical metal can 0.260 m high and 0.070 m in diameter to store liquid helium at 4.22 K; at that temperature the heat of vaporization of helium is 2.09×104J/kg. Completely surrounding the metal can are walls maintained at the temperature of liquid nitrogen, 77.3 K, with vacuum between the can and the surrounding walls. A)How much helium is lost per hour? The emissivity of the metal can is 0.200. The only heat transfer between the metal...
A physicist uses a cylindrical metal can 0.230 m high and 0.0850 m in diameter to...
A physicist uses a cylindrical metal can 0.230 m high and 0.0850 m in diameter to store liquid helium at 4.22 K; at that temperature the heat of vaporization of helium is 2.09×104J/kg. Completely surrounding the metal can are walls maintained at the temperature of liquid nitrogen, 77.3 K, with vacuum between the can and the surrounding walls. Part A How much helium is lost per hour? The emissivity of the metal can is 0.200. The only heat transfer between...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at its normal boiling point of -452.074 degrees Fahrenheit. At this temperature Helium's heat of vaporization is 20.4 kJ/kg. The walls of the helium container are 1.2 cm thick and have a thermal conductivity of 13.889 W/(m K). The helium container is surrounded by liquid nitrogen at a temperature of -327.64 degrees Fahrenheit. A. What is the conductive surface area of the metal cylinder? B....
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at its normal boiling point of -452.074 degree Fahrenheit. At this temperature Helium's heat of vaporization is 20.4 kJ/kg. The walls of the helium container are 1.2 cm thick and have a thermal conductivity of 13.889 W/(m K). The helium container is surrounded by liquid nitrogen at a temperature of -327.64 degrees Fahrenheit. a) What is the conductive surface area of the metal cylinder? b)...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at its normal boiling point of -452.074 degree Fahrenheit. At this temperature Helium's heat of vaporization is 20.4 kJ/kg. The walls of the helium container are 1.2 cm thick and have a thermal conductivity of 13.889 W/(m K). The helium container is surrounded by liquid nitrogen at a temperature of -327.64 degrees Fahrenheit. a) What is the conductive surface area of the metal cylinder? b)...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at its normal boiling point of -452.074 degree Fahrenheit. At this temperature Helium's heat of vaporization is 20.4 kJ/kg. The walls of the helium container are 1.2 cm thick and have a thermal conductivity of 13.889 W/(m K). The helium container is surrounded by liquid nitrogen at a temperature of -327.64 degrees Fahrenheit. a) What is the conductive surface area of the metal cylinder? b)...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at its normal boiling point of -452.074 degree Fahrenheit. At this temperature Helium's heat of vaporization is 20.4 kJ/kg. The walls of the helium container are 1.2 cm thick and have a thermal conductivity of 13.889 W/(m K). The helium container is surrounded by liquid nitrogen at a temperature of -327.64 degrees Fahrenheit. a) What is the conductive surface area of the metal cylinder? b)...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at its normal boiling point of -452.074 degree Fahrenheit. At this temperature Helium's heat of vaporization is 20.4 kJ/kg. The walls of the helium container are 1.2 cm thick and have a thermal conductivity of 13.889 W/(m K). The helium container is surrounded by liquid nitrogen at a temperature of -327.64 degrees Fahrenheit. a) What is the conductive surface area of the metal cylinder? b)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT