Question

A typical green laser pointer, operating at a wavelength of 532 nm, delivers an average power...

A typical green laser pointer, operating at a wavelength of 532 nm, delivers an average power of 5 mW in a circular beam of 1 mm radius. What is the rms magnetic field in this beam?

3.48E-5 T
6.81E-7 T
9.18E-4 T
7.35E-6 T
2.58E-6 T

Homework Answers

Answer #1

We know that Intensity of laser pointer will be given by:

Intensity = Power/Area

Average power of laser pointer = 5 mW = 5*10^-3 W

Area of circular beam = pi*r^2 = pi*(1*10^-3)^2 = pi*10^-6 m^2

So,

I = 5*10^-3/(pi*10^-6) = 1591.55 W/m^2

Now relation between magnetic field and average intensity is given by:

I_avg = E_rms^2/(*c) = (c*B_rms)^2/(*c)

I_avg = c*B_rms^2/

B_rms = sqrt [*I_avg/c]

B_rms = sqrt (4*pi*10^-7*1591.55/(3*10^8))

B_rms = 2.58*10^-6 T

Correct option is E.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A typical helium-neon laser found in supermarket checkout scanners emits 633-nm-wavelength light in a 1.1-mm-diameter beam...
A typical helium-neon laser found in supermarket checkout scanners emits 633-nm-wavelength light in a 1.1-mm-diameter beam with a power of 1.3 mW . A) What's the amplitude of the oscillating electric field in the laser beam? B) What's the amplitude of the oscillating magnetic field in the laser beam?
A helium-neon laser (the low power red laser often used as a pointer in presentations) is...
A helium-neon laser (the low power red laser often used as a pointer in presentations) is rated at 0.15mW. If the image of the laser is a circle of 0.25 cm in diameter, and the wavelength is 632 nm in air: a.) Compute the intensity of light. You may assume no power loss before it makes the circular image. b.) Calculate the rms electric field magnitude of the light. c.) Calculate the frequency of the light.
The light from a red laser pointer has a wavelength of about 600 nm. If this...
The light from a red laser pointer has a wavelength of about 600 nm. If this laser has a power of 0.18 mW, what is the momentum carried by a 1.8-s pulse of this radiation? (in kg · m/s) The magnetic field associated with an electromagnetic wave has an amplitude of 1.6 μT. (a) What is the amplitude of the electric field associated with this wave? (in V/m) (b) What is the intensity of this wave? (W/m2) (c) What is...
An 8.0-mW laser beam emits a cylindrical beam of single-wavelength sinusoidal light 0.90 mm in diameter....
An 8.0-mW laser beam emits a cylindrical beam of single-wavelength sinusoidal light 0.90 mm in diameter. What is the rms value of the electric field in this laser beam? (ε0 = 8.85 × 10-12 C2/N • m2, μ0 = 4π × 10-7 T • m/A, c = 3.0 × 108 m/s)
1. Thirty-five years ago, a green laser might cost $100,000 and occupy a table. Today, you...
1. Thirty-five years ago, a green laser might cost $100,000 and occupy a table. Today, you can buy one the size of a ball point pen for around $15. A green laser pointer has a beam power of 5.00 mW at a wavelength of 532 nm. Imagine that a lens is then used to focus the beam of such a laser to a circular spot 1 mm in diameter. Calculate (a) the intensity of the focused beam and (b) the...
QUESTION 10 A student took a laser with wavelength 532 nm and pointed the beam at...
QUESTION 10 A student took a laser with wavelength 532 nm and pointed the beam at a fiber. The student then observed the diffraction pattern on a paper positioned 85.4 cm past the fiber. The central maximum of the diffraction pattern had a width of 47.8 mm. What is the diameter of the fiber in micrometers (µm)? (State the answer in micrometers with 2 digits right of decimal.) QUESTION 11 A microscope has an objective lens which is circular and...
A laser emits light at power 6.01 mW and wavelength 633 nm. The laser beam is...
A laser emits light at power 6.01 mW and wavelength 633 nm. The laser beam is focused (narrowed) until its diameter matches the 1060 nm diameter of a sphere placed in its path. The sphere is perfectly absorbing and has density 5.00 × 103 kg/m3. What are (a) the beam intensity at the sphere's location, (b) the radiation pressure on the sphere, (c) the magnitude of the corresponding force, and (d) the magnitude of the acceleration that force alone would...
A laser emits light at power 5.49 mW and wavelength 633 nm. The laser beam is...
A laser emits light at power 5.49 mW and wavelength 633 nm. The laser beam is focused (narrowed) until its diameter matches the 1230 nm diameter of a sphere placed in its path. The sphere is perfectly absorbing and has density 5.00 × 103 kg/m3. What are (a) the beam intensity at the sphere's location, (b) the radiation pressure on the sphere, (c) the magnitude of the corresponding force, and (d) the magnitude of the acceleration that force alone would...
A small laser emits light at power 6.88 mW and wavelength 441 nm. The laser beam...
A small laser emits light at power 6.88 mW and wavelength 441 nm. The laser beam is focused (narrowed) until its diameter matches the 1255 nm diameter of a sphere placed in its path. The sphere is perfectly absorbing and has density 4.00×103kg/m3. What is the beam intensity at the sphere's location? Calculate the radiation pressure on the sphere. Calculate the magnitude of the corresponding force. Calculate the magnitude of the acceleration that force alone would give the sphere?
A high energy pulsed laser emits 2.50 nano second-long pulse of average power 1.60 × 1011...
A high energy pulsed laser emits 2.50 nano second-long pulse of average power 1.60 × 1011 W. The beam is cylindrical with 1.90 mm in radius. Determine the rms value of the B-field?