Question

A coil of 40 turns is wrapped around a long solenoid of cross-sectional area 7.5*10^-3. The...

A coil of 40 turns is wrapped around a long solenoid of cross-sectional area 7.5*10^-3. The solenoid is 0.50 m long and has 500 turns. The current in the solenoid is given by the function: I(t)=3t-5(A). (a) What is the induced emf in the coil? (b) The outer coil is replaced by a coil of 40 turns whose radius is three times that of the solenoid. What is the induced emf in this coil?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A toroidal solenoid has 500 turns, cross-sectional area 6.30 cm2 , and mean radius 5.00 cm...
A toroidal solenoid has 500 turns, cross-sectional area 6.30 cm2 , and mean radius 5.00 cm . PART A Calcualte the coil's self-inductance. PART B If the current decreases uniformly from 5.00 A to 2.00 A in 3.00 ms, calculate the self-induced emf in the coil. PART C The current is directed from terminal a of the coil to terminal b. Is the direction of the induced emf from ato b or from b to a?
[1] A 10 turn coil is wrapped tightly around the center of a long solenoid with...
[1] A 10 turn coil is wrapped tightly around the center of a long solenoid with 6000 turns per meter. When the current in the solenoid is decreasing by 0.5 A/s, calculate the current induced in the 10 turn coil if it has a resistance of 5 ohm and the area of the solenoid opening is 0.01 m2. Give the direction of the current if the original solenoid current was clockwise.
A very long, straight solenoid with a cross-sectional area of 2.12 cm2 is wound with 91.6...
A very long, straight solenoid with a cross-sectional area of 2.12 cm2 is wound with 91.6 turns of wire per centimeter. Starting at t = 0, the current in the solenoid is increasing according to i(t)= ( 0.180 A/s2 )t2. A secondary winding of 5 turns encircles the solenoid at its center, such that the secondary winding has the same cross-sectional area as the solenoid. What is the magnitude of the emf induced in the secondary winding at the instant...
A very long, straight solenoid with a cross-sectional area of 2.06 cm2 is wound with 92.1...
A very long, straight solenoid with a cross-sectional area of 2.06 cm2 is wound with 92.1 turns of wire per centimeter. Starting at t = 0, the current in the solenoid is increasing according to i(t)= ( 0.178 A/s2 )t2. A secondary winding of 5 turns encircles the solenoid at its center, such that the secondary winding has the same cross-sectional area as the solenoid. Q1: What is the magnitude of the emf induced in the secondary winding at the...
A long, straight solenoid with a cross-sectional area of 12.00 cm2 is wound with 80 turns...
A long, straight solenoid with a cross-sectional area of 12.00 cm2 is wound with 80 turns of wire per centimeter, and the windings carry a current of 0.16 A. A second winding of 10 turns encircles the solenoid at its center. The current in the solenoid is turned off such that the magnetic field of the solenoid becomes zero in 0.08 s. What is the average induced electromotive force (emf) in the second winding? ( ??=?? ? ??−??.?/? ) (?=?.??)
A very long, straight solenoid with a cross-sectional area of 1.91 cm2cm2 is wound with 93.2...
A very long, straight solenoid with a cross-sectional area of 1.91 cm2cm2 is wound with 93.2 turns of wire per centimeter. Starting at ttt = 0, the current in the solenoid is increasing according to i(t)=(0.160A/s2)t2i(t)=(0.160A/s2)t2. A secondary winding of 5.0 turns encircles the solenoid at its center, such that the secondary winding has the same cross-sectional area as the solenoid. What is the magnitude of the emf induced in the secondary winding at the instant that the current in...
A very long, straight solenoid with a cross-sectional area of 1.86 cm^2 is wound with 91.1...
A very long, straight solenoid with a cross-sectional area of 1.86 cm^2 is wound with 91.1 turns of wire per centimeter. Starting at t = 0, the current in the solenoid is increasing according to i(t)= ( 0.162 A/s^2 )t^2. A secondary winding of 5 turns encircles the solenoid at its center, such that the secondary winding has the same cross-sectional area as the solenoid. What is the magnitude of the emf induced in the secondary winding at the instant...
A very long, straight solenoid with a cross-sectional area of 1.97 cm2 is wound with 94.6...
A very long, straight solenoid with a cross-sectional area of 1.97 cm2 is wound with 94.6 turns of wire per centimeter. Starting at t = 0, the current in the solenoid is increasing according to i(t)= ( 0.160 A/s2 )t2. A secondary winding of 5 turns encircles the solenoid at its center, such that the secondary winding has the same cross-sectional area as the solenoid. a.What is the magnitude of the emf induced in the secondary winding at the instant...
A solenoid with a cross-sectional area of 1.14×10-3 m2 is 0.610 m long and has 985...
A solenoid with a cross-sectional area of 1.14×10-3 m2 is 0.610 m long and has 985 turns per meter. Find the induced emf in this solenoid if the current in it is increased from 0 to 2.00 A in 33.3 ms. (Answer in V)
A solenoid with a cross-sectional area of 1.91×10−3 m2m2 is 0.680 mm long and has 475...
A solenoid with a cross-sectional area of 1.91×10−3 m2m2 is 0.680 mm long and has 475 turns per meter. Find the magnitude of induced emf in this solenoid if the current in it is increased from 0 to 2.40 AA in 50.5 msms .
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT