Question

A block-spring system consists of a spring with constant k = 445 N/m attached to a...

A block-spring system consists of a spring with constant k = 445 N/m attached to a 2.25 kg block on a frictionless surface. The block is pulled 4.10 cm from equilibrium and released from rest. For the resulting oscillation, find the amplitude, angular frequency, frequency, and period. What is the maximum value of the block's velocity and acceleration?

Homework Answers

Answer #1

here, k = 445 N/m, m= 2.25 kg, and is displaced 4.10 cm from equilibrium and released from rest. So, amplitude of the resulting oscillation is 4.10 cm= 0.041m

Now, using the relations for simple harmonic motion;

angular frequency is given by w= (k/m)^1/2= (445/2.25)^1/2= 14.06/s

Also, Frequency= w/2π= 14.06/2*3.14= 2.24 Hz

Also, period= 2π(m/k)^1/2= 2*3.14*(2.25/445)^1/2= 0.4467s

Maximum velocity= Amplitude*angular frequency= 0.041*14.06= 0.576m/s

Maximum acceleration= Amplitude*angular frequency^2= 0.041*14.06^2= 8.1m/s^2

please upvote if understood to appreciate

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 170 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on...
A 170 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on a frictionless table. Its velocity is 25 cm/s when x0 = -5.6 cm . What is the amplitude of oscillation? What is the block's maximum acceleration? What is the block's position when the acceleration is maximum? What is the speed of the block when x1 = 2.6 cm ?
A 120 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on...
A 120 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on a frictionless table. Its velocity is 17 cm/s when x0 = -4.5 cm . What is the amplitude of oscillation? What is the block's maximum acceleration? What is the block's position when the acceleration is maximum? What is the speed of the block when x1 = 2.9 cm ?
A 100 g block attached to a spring with spring constant 2.7 N/m oscillates horizontally on...
A 100 g block attached to a spring with spring constant 2.7 N/m oscillates horizontally on a frictionless table. Its velocity is 22 cm/s when x0 = -5.6 cm . What is the amplitude of oscillation? What is the block's maximum acceleration? What is the block's position when the acceleration is maximum? What is the speed of the block when x1 = 2.9 cm ?
A 200 g block attached to a spring with spring constant 2.5 N/m oscillates horizontally on...
A 200 g block attached to a spring with spring constant 2.5 N/m oscillates horizontally on a frictionless table. Its velocity is 15 cm/s when x0 = -5.6 cm . a. What is the amplitude of oscillation? b. What is the block's maximum acceleration? c. What is the block's position when the acceleration is maximum? d. What is the speed of the block when x1x1x_1 = 3.0 cm ?
An oscillator consists of a block attached to a spring (k = 483 N/m). At some...
An oscillator consists of a block attached to a spring (k = 483 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.0632 m, v = -18.4 m/s, and a = -105 m/s2. Calculate (a) the frequency of oscillation, (b) the mass of the block, and (c) the amplitude of the motion.
An oscillator consists of a block attached to a spring (k = 495 N/m). At some...
An oscillator consists of a block attached to a spring (k = 495 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.0628 m, v = -17.7 m/s, and a = -124 m/s2. Calculate (a) the frequency of oscillation, (b) the mass of the block, and (c) the amplitude of the motion.
An oscillator consists of a block attached to a spring (k = 125 N/m). At some...
An oscillator consists of a block attached to a spring (k = 125 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.700 m, v = −12.0 m/s, and a = −128 m/s2. (a) Calculate the frequency of oscillation. Incorrect: Your answer is incorrect. Hz (b) Calculate the mass of the block. kg (c) Calculate the amplitude of the motion. m
1.A 1.10 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring...
1.A 1.10 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring with k = 490 N/m. Let x be the displacement of the block from the position at which the spring is unstretched. At t = 0 the block passes through x = 0 with a speed of 3.40 m/s in the positive x direction. What are the (a) frequency and (b) amplitude of the block's motion 2.A vertical spring stretches 13 cm when a...
A block with mass 0.382 kg is attached to a horizontal spring with spring constant k...
A block with mass 0.382 kg is attached to a horizontal spring with spring constant k = 1.28 N/m on a frictionless surface. The block is pulled 0.753 m from equilibrium and released. (a) What is the amplitude of the block's motion? (b) What is its period? (c) How long after release does the block take to first return to its equilibrium position? (d) What is its speed at that position? {b. 3.43 s, d. 1.38 m/s} a) A=0.753m b)...
A horizontal spring with spring constant 2 N/m has one end connected to a wall while...
A horizontal spring with spring constant 2 N/m has one end connected to a wall while the other end is connected to a block resting on a frictionless surface. The mass of the block is 0.5 kg. The block is pulled 10 cm away from its equilibrium position and released. (a) Calculate the frequency of the resulting simple harmonic motion. (b) Calculate the maximum velocity of the block When the mass is 3 cm away from equilibrium it then strikes...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT