Question

The velocity of a particle moving along the x-axis varies with time according to v(t) =...

The velocity of a particle moving along the x-axis varies with time according to

v(t) = A + Bt−1,

where

A = 7 m/s,

B = 0.33 m,

and

1.0 s ≤ t ≤ 8.0 s.

Determine the acceleration (in m/s2) and position (in m) of the particle at

t = 2.6 s

and

t = 5.6 s.

Assume that

x(t = 1 s) = 0.

t = 2.6 s

acceleration  m/s2 position  m ?

t = 5.6 s

acceleration  m/s2   position  m ?

Homework Answers

Answer #1

From the given question,

v(t) = A + Bt−1,

where A = 7 m/s, B = 0.33 m, 1.0 s ≤ t ≤ 8.0 s.

a(t)= dv/dt = 0 - Bt^-2

=-0.33t^-2

a(2.6)=-0.33(2.6)^-2=-0.0489

a(5.6)=0.33(5.6)^-2=-0.0105

position(x)= =

x =At + B logt + C

when t=1, x=0

0=A(1)+ Blog(1) +C

0=7+0+c

c=-7

x =7t + 0.33logt -7

x(2.6)=7(2.6) + 0.33log(2.6) -7

x(2.6)=11.51 m

x(5.6)=7(5.6) + 0.33log(5.6) -7

x(5.6)=32.77 m

t = 2.6 s

acceleration = -0.0489 m/s2     position =11.51 m

t = 5.6 s

acceleration =-0.0105 m/s2   position = 32.77 m ?

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The position of a particle confined to move on an axis varies according to the equation...
The position of a particle confined to move on an axis varies according to the equation x(t)=at3 -bt-c where a=2m/s3 , b=4m/s, c=10 m. Draw the graph of the motion, then find the following: a) the average velocity between t1=0 and t2=2s. b) the instantaneous velocity and acceleration functions, c) the instantaneous velocity and acceleration at t=4 sec. d) the time when the partite stops momentarily,
A particles velocity along the x-axis is described by v(t) = At + Bt^2, where t...
A particles velocity along the x-axis is described by v(t) = At + Bt^2, where t is in seconds, velocity is in m/s^2, A = 1.18m/s^2 and B = -0.61m/s^3. What is the distance traveled, in m, by the particle between times t0=1.0 and t1=3.0? please show steps and calculations
A particle's velocity along the x-axis is described by v(t)= At + Bt2, where t is...
A particle's velocity along the x-axis is described by v(t)= At + Bt2, where t is in seconds, v is in m/s, A= 0.85 m/s2, and B= -0.69 m/s3. Acceleration= -0.53 m/s2 @ t=0 and the Displacement= -2.58 m b/w t=1s to t=3s. What is the distance traveled in meters, by the particle b/w times t=1s and t=3s?
The velocity-time graph of a particle moving along the x-axis is shown. The particle has zero...
The velocity-time graph of a particle moving along the x-axis is shown. The particle has zero velocity at t = 0.00 s and reaches a maximum velocity, vmax, after a total elapsed time, ttotal. If the initial position of the particle is x0 = 7.29 m, the maximum velocity of the particle is vmax = 11.3 m/s, and the total elapsed time is ttotal = 25.0 s, what is the particle's position at t = 16.7 s? b. At t...
A particle moves along the x axis. It is initially at the position 0.150 m, moving...
A particle moves along the x axis. It is initially at the position 0.150 m, moving with velocity 0.080 m/s and acceleration -0.340 m/s2. Suppose it moves with constant acceleration for 5.60 s. (a) Find the position of the particle after this time. (b) Find its velocity at the end of this time interval. Next, assume it moves with simple harmonic motion for 5.60 s and x = 0 is its equilibrium position. (Assume that the velocity and acceleration is...
A particle moves along the x axis. It is initially at the position 0.150 m, moving...
A particle moves along the x axis. It is initially at the position 0.150 m, moving with velocity 0.080 m/s and acceleration -0.340 m/s2. Suppose it moves with constant acceleration for 5.60 s. (c) Find its position (d) Find its velocity at the end of this time interval.
A 4.60 kg particle moves along the x axis. Its position varies with time according to...
A 4.60 kg particle moves along the x axis. Its position varies with time according to x = t + 1.8t3, where x is in meters and t is in seconds. (a) Find the kinetic energy at any time t. (Accurately round any coefficient to exactly two decimal places. Use t as necessary _______J (b) Find the acceleration of the particle and the force acting on it at time t. (Accurately round any coefficient to exactly two decimal places. Use...
The position of a particle moving along the x axis depends on the time according to...
The position of a particle moving along the x axis depends on the time according to the equation x = ct2 − bt3, where x is in meters and t in seconds. For the following, let the numerical values of c and b be 5.1 and 1.5, respectively. (For vector quantities, indicate direction with the sign of your answer.) (c) At what time does the particle reach its maximum positive x position? From t = 0.0 s to t =...
) A particle is moving according to the velocity equation v(t) = 9t^2-8t-2 . The equation...
) A particle is moving according to the velocity equation v(t) = 9t^2-8t-2 . The equation uses units of meters and seconds appropriately. At t = 1 s the particle is located at x = 2 m. (a) What is the particle's position at t = 2 s? (b) What is the particle's acceleration at t = 1 s? (c) What is the particle's average velocity from t = 2 s to t = 3 s?
please do 1,2 and 3 thanks 1.The position of a particle moving along the x axis...
please do 1,2 and 3 thanks 1.The position of a particle moving along the x axis is given in centimeters by x = 9.12 + 1.75 t3, where t is in seconds. Calculate (a) the average velocity during the time interval t = 2.00 s to t = 3.00 s; (b) the instantaneous velocity at t = 2.00 s; (c) the instantaneous velocity at t = 3.00 s; (d) the instantaneous velocity at t = 2.50 s; and (e) the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT