Question

The combination of an applied force and a constant frictional force produces a constant total torque...

The combination of an applied force and a constant frictional force produces a constant total torque of 35.8 N·m on a wheel rotating about a fixed axis. The applied force acts for 6.04 s. During this time the angular speed of the wheel increases from 0 to 10.2 rad/s. The applied force is then removed, and the wheel comes to rest in 59.7 s.

(a) Find the moment of inertia of the wheel.
_______ kg

Homework Answers

Answer #1

a)
Angular acceleration ? = (?2- ?1)/t = 10.2/6.04 = 1.688 rad/s^2

I ? = I *1.688 = 35.8

I = 35.8/ 1.688 = 21.208 kg m/s^2
===========================
b)
The wheel comes to rest only due to the frictional torque ? (friction)

? (friction) = I ?' = 21.208 ?'
?' = - 10.2/59.7 = - 0.170 minus to show that the speed reduces.
? (friction) = - 21.208*0.170 = 3.605 N.m
==============================
c)
in time 6.04s
?= 0.5 ? t^2 = 0.5*1.688*6.04^2 =30.79 radians.

Or from average angular velocity *time = (10.2/2)*6.04 =30.08 radians

In time 59.7 s
(10.2/2)*59.7 = 281.2 radians

Total angle traversed
281.2 +27.6 = 304.47 radians
304.47 / (2?) revolutions = 48.45 revolutions

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The combination of an applied force and a frictional force produces a constant torque of 40...
The combination of an applied force and a frictional force produces a constant torque of 40 N·m on a wheel rotating about a fixed axis. The applied force acts for 8.0 seconds, during which time the angular speed of the wheel increases from 0 to 700 degrees/second. The applied force is then removed, and the wheel comes to rest in 55 s. Answer the following questions. (a)What is the magnitude of the angular acceleration of the wheel while the applied...
The combination of an applied force and a friction force produces a constant total torque of...
The combination of an applied force and a friction force produces a constant total torque of 35.9 N · m on a wheel rotating about a fixed axis. The applied force acts for 6.20 s. During this time, the angular speed of the wheel increases from 0 to 9.6 rad/s. The applied force is then removed, and the wheel comes to rest in 60.5 s. (a) Find the moment of inertia of the wheel. kg · m2 (b) Find the...
1) The combination of an applied force and a friction force produces a constant total torque...
1) The combination of an applied force and a friction force produces a constant total torque of 35.8 N · m on a wheel rotating about a fixed axis. The applied force acts for 5.90 s. During this time, the angular speed of the wheel increases from 0 to 10.1 rad/s. The applied force is then removed, and the wheel comes to rest in 60.1 s. (a) Find the moment of inertia of the wheel.   kg · m2 (b) Find...
A wheel free to rotate about its axis that is not frictionless is initially at rest....
A wheel free to rotate about its axis that is not frictionless is initially at rest. A constant external torque of +52 N·m is applied to the wheel for 23 s, giving the wheel an angular velocity of +640 rev/min. The external torque is then removed, and the wheel comes to rest 120 s later. (Include the sign in your answers.) (a) Find the moment of inertia of the wheel.   kg·m2 (b) Find the frictional torque, which is assumed to...
A ventilation fan has a constant net torque of magnitude 0.11 N·m applied to it. The...
A ventilation fan has a constant net torque of magnitude 0.11 N·m applied to it. The magnitude of the resulting angular acceleration of the ventilation fan is 2.00 rad/s2. Find the moment of inertia of the ventilation fan.
A force of 15N is being applied to an object at a distance of 33cm from...
A force of 15N is being applied to an object at a distance of 33cm from the axis of rotation. The object goes from rest up to 30.0 rad/s in 3.0 seconds. Determine the moment of inertia.
A bicycle wheel has a mass of 2.0 kg and a radius of 60 cm. With...
A bicycle wheel has a mass of 2.0 kg and a radius of 60 cm. With the wheel initially at rest, a torque of 0.36 N-m is then applied. What is the angular speed of the tire after 5 seconds? The moment of inertia of a wheel is mR2. A. 0.5 rad/s B. 1.0 rad/s C. 1.5 rad/s D. 2.5 rad/s E. 5.0 rad/s
A cylinder is rotating about an axis that passes through the center of each circular end...
A cylinder is rotating about an axis that passes through the center of each circular end piece. The cylinder has a radius of 0.120 m, an angular speed of 62.0 rad/s, and a moment of inertia of 1.46 kg·m2. A brake shoe presses against the surface of the cylinder and applies a tangential frictional force to it. The frictional force reduces the angular speed of the cylinder by a factor of 3 during a time of 6.00 s. (a) Find...
A car's wheel has a rotational inertia of 2.8 kg m2. Working in a coordinate system...
A car's wheel has a rotational inertia of 2.8 kg m2. Working in a coordinate system where counterclockwise is positive, answer the following questions. Treat parts a, b, and c as stand-alone questions; the response from one is not needed for the following parts. a) If the wheel is spinning with an angular velocity of 6 rad/s counterclockwise and then a torque of 15 N m is applied over a time interval of 4 s, What is the wheel's final...
A car's wheel has a rotational inertia of 3.1 kg m2. Working in a coordinate system...
A car's wheel has a rotational inertia of 3.1 kg m2. Working in a coordinate system where counterclockwise is positive, answer the following questions. Treat parts a, b, and c as stand-alone questions; the response from one is not needed for the following parts. a) If the wheel is spinning with an angular velocity of 6 rad/s counterclockwise and then a torque of 15 N m is applied over a time interval of 4 s, What is the wheel's final...