Question

A 120-kg block slides towards a stationary 55-kg block at a speed of 6 m/s. What...

A 120-kg block slides towards a stationary 55-kg block at a speed of 6 m/s. What is the maximum possible loss of kinetic energy (in joules) for this collision? Round to the nearest integer.

Hint: What kind of collision leads to the greatest loss of kinetic energy? Use conservation of momentum to find the velocities of each block after the collision.

Homework Answers

Answer #1

Dear Student,

Maximum loss of kinetic energy will happen in case of fully non elastic collision.

In case of non elastic collision the two mass will be fused together and will move in a constant velocity.

But total momentum must be conserved before and after collision as follows...

Happy to help you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An 8.70-kg block slides with an initial speed of 1.80 m/s down a ramp inclined at...
An 8.70-kg block slides with an initial speed of 1.80 m/s down a ramp inclined at an angle of 25.3 ∘ with the horizontal. The coefficient of kinetic friction between the block and the ramp is 0.87. Use energy conservation to find the distance the block slides before coming to rest.
A rubber block (m= 20.0g) slides along a frictionless table at v=2.00m/s directly towards a steel...
A rubber block (m= 20.0g) slides along a frictionless table at v=2.00m/s directly towards a steel block (m= 0.0500kg), which is at rest on the table. After an inelastic collision, in which 25% of the system's kinetic energy is lost, the rubber block rebounds the way it came at a reduced speed. Determine the speed of each block after the collision.
A 5 kg block with a speed of 3.0 m/s collides with a 10 kg block...
A 5 kg block with a speed of 3.0 m/s collides with a 10 kg block that has a speed of 2.0 m/s in the same direction. After the collision, the 10 kg block travels in the original direction with a speed of 2.5 m/s. (a) Draw (i) a before/after sketch, (ii) momentum & energy bar diagrams of the situation, and (iii) identify the collision as elastic, inelastic and completely inelastic. (b) what is the velocity of the 5.0 kg...
Speed amplifier. Block 1 of mass m1 slides along an x axis on a frictionless floor...
Speed amplifier. Block 1 of mass m1 slides along an x axis on a frictionless floor with a speed of Then it undergoes a one-dimensional elastic collision with stationary block 2 of mass m2 = 0.500m1. Next, block 2 undergoes a onedimensional elastic collision with stationary block 3 of mass m3 = 0.500m2. (a) What then is the speed of block 3? (b) Are the kinetic energy, and the momentum of block 3 greater than, less than, or the same...
A heavy 3.8 kg block moves at 4.2 m/s and then makes a head-on elastic collision...
A heavy 3.8 kg block moves at 4.2 m/s and then makes a head-on elastic collision with a lighter, stationary block of mass 1.7 kg. Use conservation of momentum and the fact that the relative speed of recession equals the relative speed of approach to find velocity of each block after the collision. Check your answer by calculating the initial and final kinetic energies of each block. Show work and explain
A 6.9 kg block with a speed of 3.6 m/s collides with a 13.8 kg block...
A 6.9 kg block with a speed of 3.6 m/s collides with a 13.8 kg block that has a speed of 2.4 m/s in the same direction. After the collision, the 13.8 kg block is observed to be traveling in the original direction with a speed of 3.0 m/s. (a) What is the velocity of the 6.9 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 7.0 kg block with a speed of 3.0 m/s collides with a 14.0 kg block...
A 7.0 kg block with a speed of 3.0 m/s collides with a 14.0 kg block that has a speed of 2.0 m/s in the same direction. After the collision, the 14.0 kg block is observed to be traveling in the original direction with a speed of 2.5 m/s. (a) What is the velocity of the 7.0 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 2.0 kg block with a speed of 5.1 m/s collides with a 4.0 kg block...
A 2.0 kg block with a speed of 5.1 m/s collides with a 4.0 kg block that has a speed of 3.4 m/s in the same direction. After the collision, the 4.0 kg block is observed to be traveling in the original direction with a speed of 4.3 m/s. (a) What is the velocity of the 2.0 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 3.4 kg block moving with a velocity of +4.0 m/s makes an elastic collision with...
A 3.4 kg block moving with a velocity of +4.0 m/s makes an elastic collision with a stationary block of mass 1.9 kg. (a) Use conservation of momentum and the fact that the relative speed of recession equals the relative speed of approach to find the velocity of each block after the collision. ______m/s (for the 3.4 kg block) ______m/s (for the 1.9 kg block) (b) Check your answer by calculating the initial and final kinetic energies of each block....
A 5.0 kg block with a speed of 3.0 m/s collides with a 10 kg block...
A 5.0 kg block with a speed of 3.0 m/s collides with a 10 kg block that has a speed of 2.2 m/s in the same direction. After the collision, the 10 kg block is observed to be traveling in the original direction with a speed of 2.7 m/s. (b) By how much does the total kinetic energy of the system of two blocks change because of the collision? ________ J (c) Suppose, instead, that the 10 kg block ends...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT