Question

) A particle is moving according to the velocity equation v(t) = 9t^2-8t-2 . The equation...

) A particle is moving according to the velocity equation v(t) = 9t^2-8t-2 . The equation uses units of meters and seconds appropriately. At t = 1 s the particle is located at x = 2 m. (a) What is the particle's position at t = 2 s? (b) What is the particle's acceleration at t = 1 s? (c) What is the particle's average velocity from t = 2 s to t = 3 s?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The velocity of a particle moving along the x-axis varies with time according to v(t) =...
The velocity of a particle moving along the x-axis varies with time according to v(t) = A + Bt−1, where A = 7 m/s, B = 0.33 m, and 1.0 s ≤ t ≤ 8.0 s. Determine the acceleration (in m/s2) and position (in m) of the particle at t = 2.6 s and t = 5.6 s. Assume that x(t = 1 s) = 0. t = 2.6 s acceleration  m/s2 position  m ? t = 5.6 s acceleration  m/s2   position  m ?
The position of a particle moving with constant acceleration is given by x(t) = 2t2 +...
The position of a particle moving with constant acceleration is given by x(t) = 2t2 + 8t + 4 where x is in meters and t is in seconds. (a) Calculate the average velocity of this particle between t = 6 seconds and t = 9 seconds.   (b) At what time during this interval is the average velocity equal to the instantaneous velocity?   
1-The velocity of a particle is v = { 6 i + ( 28 - 2...
1-The velocity of a particle is v = { 6 i + ( 28 - 2 t ) j } m/s, where t is in seconds. If r=0 when t=0, determine particle displacement during time interval t = 3 s to t = 8 s in the y direction. 2-A particle, originally at rest and located at point (1 ft, 4 ft, 5 ft), is subjected to an acceleration of a={ 3 t i + 17 t2k} ft/s. Determine magnitude...
The velocity of a particle moving along a line is a function of time given by  v(t)=81/(t2+9t+18)....
The velocity of a particle moving along a line is a function of time given by  v(t)=81/(t2+9t+18). Find the distance that the particle has traveled after t=9 seconds if it started at t=0 seconds.
The position of a particle in rectilinear motion is given by: x(t) = (t^3 - 9t^2...
The position of a particle in rectilinear motion is given by: x(t) = (t^3 - 9t^2 + 24t + 5)ft. with t in seconds. plot the position, velocity, and acceleration in the first 10 seconds
The velocity-time graph of a particle moving along the x-axis is shown. The particle has zero...
The velocity-time graph of a particle moving along the x-axis is shown. The particle has zero velocity at t = 0.00 s and reaches a maximum velocity, vmax, after a total elapsed time, ttotal. If the initial position of the particle is x0 = 7.29 m, the maximum velocity of the particle is vmax = 11.3 m/s, and the total elapsed time is ttotal = 25.0 s, what is the particle's position at t = 16.7 s? b. At t...
.The x and y components of the velocity of a particle are: vx = (2 t...
.The x and y components of the velocity of a particle are: vx = (2 t + 4) p / s vy = (8 ⁄ y) p / s Initially, the particle is located at the coordinates x = 1 and y = 0. Determine the position, the magnitude of the velocity and the magnitude of the particle's acceleration when t = 2 s.
2). A particle moving on the x-axis has a time-dependent position (t) given by the equation...
2). A particle moving on the x-axis has a time-dependent position (t) given by the equation x (t) = ct - bt^3. Where the units of x are meters (m) and time t in seconds (s). (Hint: you must get derivatives, you need graph paper) (a) So that the position in x has units of meter which are the units of the constants c and b? Sic = 5yb = 1.Desdeti = 0satf = 3s. (b) What is its displacement,...
1) The position of a particle moving along x direction is given by: x=8t-3t2.What is the...
1) The position of a particle moving along x direction is given by: x=8t-3t2.What is the velocity of the particle at t=2 s and what is the acceleration? 2) A roller coaster car starts from rest and descends h1= 40 m. The car has a mass of 75 kg. What is the speed at 20m while going down the hill?
The equation of motioj of a partucle is given by s(t)= t^3 -6t^2 +9t where s...
The equation of motioj of a partucle is given by s(t)= t^3 -6t^2 +9t where s is in meters and t is in seconds. a) Find when the particle is moving in the negatuve direction b) Find when the particle is accelerating in the positive direction