Question

A merry-go-round at a playground is rotating at 6.0 rev/min. Four children jump on and increase...

  1. A merry-go-round at a playground is rotating at 6.0 rev/min. Four children jump on and increase the moment of inertia of the merry-go-round by 30%.

What is the new rotation rate? What torque must be applied by the merry-go-round’s motor in order to restore the initial rotation rate within 30 seconds or 0.5 minutes?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If you and your children are on a rotating playground merry-go-round wheel and you jump off,...
If you and your children are on a rotating playground merry-go-round wheel and you jump off, what happens to the rate of spin of he wheel? Assume it has a mass of 200 kg, a radius of 2 meters, and is roughly a disk of solid material initially rotating at 1 turn in 3 seconds. Let your mass be 65 kg and find the new rate of rotation after you jump off.
A playground merry-go-round of radius R = 2.6 m has a moment of inertia of I...
A playground merry-go-round of radius R = 2.6 m has a moment of inertia of I = 200 kg*m^2. and is rotating at a rate of ω = 11 rev/min around a frictionless vertical axis. Facing the axle, a 39 kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round (in rev/min)
A playground merry-go-round of radius 1.9 m has a moment of inertia 139 kg.m2 and is...
A playground merry-go-round of radius 1.9 m has a moment of inertia 139 kg.m2 and is rotating at 9 rev/min about a frictionless vertical axle. Facing the axle, a 27 kg child hops onto the merry-go-round, and manages to sit down on the edge. What is the new angular speed of the merry-go-round?
A playground merry-go-round of radius R = 1.60 m has a moment of inertia I =...
A playground merry-go-round of radius R = 1.60 m has a moment of inertia I = 255 kg·m2 and is rotating at 11.0 rev/min about a frictionless vertical axle. Facing the axle, a 25.0 kg child hops onto the merry-go-round and manages to sit down on its edge. What is the new angular speed of the merry-go-round?​
A 5.0-m radius playground merry-go-round with a moment of inertia of 2000 kg?m2 is rotating freely...
A 5.0-m radius playground merry-go-round with a moment of inertia of 2000 kg?m2 is rotating freely with an angular speed of 3.0 rad/s. Two people, each having a mass of 60 kg are standing right outside the edge of the merry-go-round. One person radially steps on the edge merry-go-round with negligible speed and the angular speed changes to ?1. A few seconds later, the second person radially steps on the merry-go-round with negligible speed but at distance of 4.0 m...
A 5.0-m radius playground merry-go-round with a moment of inertia of 2000 kg?m2 is rotating freely...
A 5.0-m radius playground merry-go-round with a moment of inertia of 2000 kg?m2 is rotating freely with an angular speed of 3.0 rad/s. Two people, each having a mass of 60 kg are standing right outside the edge of the merry-go-round. One person radially steps on the edge merry-go-round with negligible speed and the angular speed changes to ?1. A few seconds later, the second person radially steps on the merry-go-round with negligible speed but at distance of 4.0 m...
A playground merry-go-round with a moment of inertia of 300 kg m2 is rotating with no...
A playground merry-go-round with a moment of inertia of 300 kg m2 is rotating with no friction at an angular velocity of 2.3 rad/s. Sharon, whose mass is 70 kg, runs and jumps on the merry-go-round in such a way that after she jumps on it the merry-go round stops. How fast, in m/s was she running if the merry-go-round had a radius of 2.5 m? Enter only the numerical value of your answer to 2 significant figures. Do not...
A playground merry-go-round has a moment of inertia of 600 kg m2. When the merry-go-round is...
A playground merry-go-round has a moment of inertia of 600 kg m2. When the merry-go-round is at rest, a 20 kg boy runs at 5.9 m/s along a line tangential to the rim and jumps on, landing on the rim a distance of 3.0 m from the rotation axis of the merry-go-round. The angular velocity of the merry-go-round is then: A.1.2 rad/s B.0.38 rad/s C.0.45 rad/s D.0.56 rad/s E.0.72 rad/s
Two children with identical mass sit on a uniformly rotating merry-go-round. One of them sits close...
Two children with identical mass sit on a uniformly rotating merry-go-round. One of them sits close to the axis, and the other sits close to the edge. Consider their angular velocities, rotational inertia and angular momenta about the merry-go-round’s axis. Which of the following is a true statement? A. The children have the same angular velocity, but different rotational inertia and angular momenta. B. The children have the same angular velocity and angular momentum, but different rotational inertia . C....
A playground merry-go-round of radius ? = 2.0 m has a moment of inertia ? =...
A playground merry-go-round of radius ? = 2.0 m has a moment of inertia ? = 250 kg ⋅ m^2 is rotating at 15 rpm about a frictionless, vertical axle. Facing the axle, a 25-kg child hops onto the merry-goround and manages to sit down on the edge. (a) (10 pts) What is the total angular momentum of the ‘merry-go-round-child’ system before and after the child hops on the the merry-go-round? (b) (10 pts) What is the new angular speed,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT