Question

oppositlely charged parallel plates are separated by 5.00 mm. A potential difference of 400.0 v exists...

oppositlely charged parallel plates are separated by 5.00 mm. A potential difference of 400.0 v exists between the plates. a) what is the magnitude of the electric field between the plates? b) how much work does the electric field do moving an electron from the negative plate to the positive plate?

Homework Answers

Answer #1

distance between the plates d = 5mm = 0.005 m

potential difference V = 400 V

a) magnitude of electric field between the plates, E

E = 80,000 V/m = 80,000 N/C

b) work done by the electric field to move an electron from negative plate to positive plate is:

W = Fd;

where d is the distance between the plates;

F is the force on an electron due to the electric field and is given by F=qE, q is the charge on an electron;

F = (1.602 * 10-19 C) (80,000 N/C)

   = 1.28*10-14 N

W = (1.28*10-14 N)(0.005m)

     = 6.41 * 10-17 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Oppositely charged parallel plates are separated by 6.34 mm. A potential difference of 600 V exists...
Oppositely charged parallel plates are separated by 6.34 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the magnitude of the force on an electron between the plates? N (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.92 mm from the positive plate? J
The surfaces of two large parallel conducting plates separated by 5.0 cm have uniform surface charge...
The surfaces of two large parallel conducting plates separated by 5.0 cm have uniform surface charge densities that are equal in magnitude but opposite in sign. The difference in potential between the plates is 200 V. (a) Is the positive or the negative plate at the higher potential? (b) What is the magnitude of the electric field between the plates? (c) An electron is released from rest next to the negatively charged surface. Find the work done by the electric...
An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated...
An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated by a distance of 1.40 mm. If a 22.4-V potential difference is applied to these plates, calculate the following. (a) the electric field between the plates magnitude     kV/m direction     ---Select--- from the positive plate to the negative plate from the negative plate to the positive plate (b) the capacitance   pF (c) the charge on each plate
Two parallel plates are separated by a distance of 12.3 mm are connected to a 9...
Two parallel plates are separated by a distance of 12.3 mm are connected to a 9 volt battery. A proton is emitted from positive plate with an initial speed of 1.62×10^4 m/s (A) What is the speed of the proton when it is at a potential of 1.03 volts? (B) At what distance from the negative plate is the proton when it is at a potential of 1.03 volts? (C) What is the magitude of the electric field between the...
Two large, flat parallel plates are separated by 0.007 m. The negative plate is grounded and...
Two large, flat parallel plates are separated by 0.007 m. The negative plate is grounded and the positive plate has an electrical potential of 450 V. A singly-charged particle is released from rest at the positive plate and hits the negative plate 3.0×10-6 s later. a) What is the magnitude of the electric field between the plates? b) What is the magnitude of the electric force on the particle? C)What is the magnitude of the acceleration of the particle? d)What...
A potential of 24.0 V is applied across a 3.25 pF parallel plate capacitor. The plate...
A potential of 24.0 V is applied across a 3.25 pF parallel plate capacitor. The plate separation is 2.00 mm. a). If the plates are identical, what is the surface area of each plate? b). How much charge is on the plates? c). What is the electric field between the plates? d). If an electron is released at the negative plate with what velocity will it strike the positive plate? e). What force did the electron experience while it was...
A Parallel plate capacitor is charged fully using a 48 V battery such that the charge...
A Parallel plate capacitor is charged fully using a 48 V battery such that the charge on it is 230 pC and the plate separation is 3 mm. The capacitor is then disconnected from the battery and the plate separation doubled. What is: The new charge on the plates after the separation is increased     The new potential difference between the plates     The Field between the plates after increasing the separation     How much work does one have to...
The potential difference between a pair of oppositely charged parallel plates is 393 V. (a) If...
The potential difference between a pair of oppositely charged parallel plates is 393 V. (a) If the spacing between the plates is tripled without altering the charge on the plates, what is the new potential difference between the plates? (b) If the plate spacing is doubled while the potential difference between the plates is kept constant, what is the ratio of the final charge on one of the plates to the original charge
Two large, parallel, metal plates carry opposite charges of equal magnitude. They are separated by a...
Two large, parallel, metal plates carry opposite charges of equal magnitude. They are separated by a distance of 45.0 mm , and the potential difference between them is 365 V (A) What is the magnitude of the electric field (assumed to be uniform) in the region between the plates? (B) What is the magnitude of the force this field exerts on a particle with a charge of 2.10 nC ? (C) Use the results of part (b) to compute the...
A parallel-plate air-filled capacitor having area 58 cm2 and plate spacing 0.89 mm is charged to...
A parallel-plate air-filled capacitor having area 58 cm2 and plate spacing 0.89 mm is charged to a potential difference of 520 V. Find (a) the capacitance, (b) the magnitude of the charge on each plate, (c) the stored energy, (d) the electric field between the plates, (e) the energy density between the plates.