Question

A  wave of sinusoidal form has a frequency 1275 rads/s and a amplitude of 2.75 mm propagates...

A  wave of sinusoidal form has a frequency 1275 rads/s and a amplitude of 2.75 mm propagates along a cable with linear density of 2.35 g/m and tension 1245N

(a) The average rate energy is moved by the wave to the opposite end of the cable is?

(b) An identical wave, simultaneously travels along an adjacent identical cable, what is the total average rate at which energy is moved to the opposite ends of the two cables by the waves? Alternatively, the two waves are sent along the same cable simultaneously, what is the total average rate at which they move energy when they have a phase difference of

(c) 0 rad?

(d) .35 π rad?

(e) .85 π rad?

(f) π rad?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A wave of sinusoidal form has a frequency of 1277 rads/s and an amplitude of 2.6...
A wave of sinusoidal form has a frequency of 1277 rads/s and an amplitude of 2.6 mm propagates along a cable with linear density of 2.4 g/m and tension 1250N. (a) What is the average rate energy moved by the wave to the opposite end of the cable? (b) an identical wave simultaneously travels along an adjacent cable, what is the total average rate at which energy is moved to the opposite ends of the two cables by the waves?...
A sinusoidal wave travels down a long string at a frequency of 800rad/s, a wavelength of...
A sinusoidal wave travels down a long string at a frequency of 800rad/s, a wavelength of .35m, an amplitude of 0.020m, and a mass/length is 0.0050 kg/m. a. What is the wave speed? b. What is the power of the wave? c. What is the energy per unit length? d. What is the tension in the string?
Consider a loop in the standing wave created by two waves (amplitude 5.86 mm and frequency...
Consider a loop in the standing wave created by two waves (amplitude 5.86 mm and frequency 113 Hz) traveling in opposite directions along a string with length 2.89 m and mass 129 g and under tension 44.0 N. At what rate does energy enter the loop from (a) each side and (b) both sides? (c) What is the maximum kinetic energy of the string in the loop during its oscillation?
Consider a loop in the standing wave created by two waves (amplitude 5.58 mm and frequency...
Consider a loop in the standing wave created by two waves (amplitude 5.58 mm and frequency 115 Hz) traveling in opposite directions along a string with length 3.98 m and mass 145 g and under tension 42.4 N. At what rate does energy enter the loop from (a) each side and (b) both sides? (c) What is the maximum kinetic energy of the string in the loop during its oscillation?
Question 1 Science affecting our daily lives is exemplified by: relying on hunches to solve crimes....
Question 1 Science affecting our daily lives is exemplified by: relying on hunches to solve crimes. using DNA evidence in criminal investigations. seeking the help of people with psychic visions in police work. relying entirely on preconceptions to identify people who may have committed crimes. 4 points Question 2 When an object’s velocity changes, which of the following must have occurred? A unbalanced force acted on the object. An balanced force acted on the object. The object started to deviate...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT