Question

The rms (root-mean-square) speed of a diatomic hydrogen molecule at 50∘C is 2000 m/s. Note that...

The rms (root-mean-square) speed of a diatomic hydrogen molecule at 50∘C is 2000 m/s. Note that 1.0 mol of diatomic hydrogen at 50∘C has a total translational kinetic energy of 4000 J.

Part B

The total translational kinetic energy of 1.0 mole of diatomic oxygen at 50∘C is:

Choose the correct total translational kinetic energy.

View Available Hint(s)

Choose the correct total translational kinetic energy.

(16)(4000J)=64000J
(4)(4000J)=16000J
4000J
(14)(4000J)=1000J
(116)(4000J)=150J
none of the above

Part C

The temperature of the diatomic hydrogen gas sample is increased to 100∘C. The root-mean-square speed vrms for diatomic hydrogen at 100∘C is:

Choose the correct vrms.

Choose the correct .

(2)(2000m/s)=4000m/s
(2√)(2000m/s)=2800m/s
2000m/s
(12√)(2000m/s)=1400m/s
(12)(2000m/s)=1000m/s

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
80 g of a diatomic ideal gas has a root-mean-square speed of 353 m/s. What is...
80 g of a diatomic ideal gas has a root-mean-square speed of 353 m/s. What is the internal energy of the gas?
The root mean square speed of O2 molecules at 29°C is about 0.485 km/s. What is...
The root mean square speed of O2 molecules at 29°C is about 0.485 km/s. What is the root mean square speed (in km/s) of a H2 molecule at 29°C? ____km/s
(a) Compute the root-mean-square speed of a nitrogen molecule at 99.1°C. The molar mass of nitrogen...
(a) Compute the root-mean-square speed of a nitrogen molecule at 99.1°C. The molar mass of nitrogen molecules (N2) is 28.0×10-3 kg/mol. At what temperatures will the root-mean-square speed be (b) 1/3 times that value and (c) 2 times that value?
Compute the root-mean-square speed of a nitrogen molecule at 23.6°C. The molar mass of nitrogen molecules...
Compute the root-mean-square speed of a nitrogen molecule at 23.6°C. The molar mass of nitrogen molecules (N2) is 28.0×10-3 kg/mol. At what temperatures will the root-mean-square speed be (b) 1/4 times that value and (c) 4 times that value?
Compute the root-mean-square speed of a nitrogen molecule at 60.1°C. The molar mass of nitrogen molecules...
Compute the root-mean-square speed of a nitrogen molecule at 60.1°C. The molar mass of nitrogen molecules (N2) is 28.0×10-3 kg/mol. At what temperatures will the root-mean-square speed be (b) 1/3 times that value and (c) 4 times that value?
The average speed of a diatomic oxygen molecule at 25 ∘C is 482.1 m⋅s−1 . What...
The average speed of a diatomic oxygen molecule at 25 ∘C is 482.1 m⋅s−1 . What is the average wavelength of an oxygen molecule at this temperature? Assume that the molecule acts as a single particle.
Q26. At what temperature does the root-mean-square speed of H2 equal the escape speed from the...
Q26. At what temperature does the root-mean-square speed of H2 equal the escape speed from the Moon? The mass of H2 molecule is 3.32x10-27kg. (A) -30°C (B) 28°C (C) 179°C (D) 450°C (E) 1027°C Q27. A container holds a mixture of 1 mol of monoatomic gas and 2 mol of diatomic gas at room temperature. What is the molar specific heat of the mixture? (A) 12.5 J/mol×K (B) 18.0 J/mol×K (C) 20.8 J/mol×K (D) 23.5 J/mol×K (E) 29.1 J/mol×K
The collision diameter, d, of an H2 molecule is about 0.25 nm = 2.5 * 10^-10...
The collision diameter, d, of an H2 molecule is about 0.25 nm = 2.5 * 10^-10 m. For H2 gas at 0 degrees celsius and 1 bar, calculate the following: a. Root-mean-square velocity b. The translational kinetic energy of 1 mol of H2 molecules c. The number of H2 molecules in 1 mL of the gas d. The mean free path e. The number of collisions each H2 molecule undergoes in 1 s f. The total number of intermolecular collisions...
2 Equipartition The laws of statistical mechanics lead to a surprising, simple, and useful result —...
2 Equipartition The laws of statistical mechanics lead to a surprising, simple, and useful result — the Equipartition Theorem. In thermal equilibrium, the average energy of every degree of freedom is the same: hEi = 1 /2 kBT. A degree of freedom is a way in which the system can move or store energy. (In this expression and what follows, h· · ·i means the average of the quantity in brackets.) One consequence of this is the physicists’ form of...
A weather balloon contains 222 L of He gas at 20. °C and 760. mmHg. What...
A weather balloon contains 222 L of He gas at 20. °C and 760. mmHg. What is the volume of the balloon when it ascends to an altitude where the temperature is -40. °C and 540. mmHg? 1 What volume does 12.5 g of Ar gas at a pressure of 1.05 atm and a temperature of 322 K occupy? Would the volume be different if the sample were 12.5 g of He gas under the same conditions? How many moles...