Question

A 2.0 kg bowling ball is rolling east at 1.5 m/s. It collides with a 1.0...

A 2.0 kg bowling ball is rolling east at 1.5 m/s. It collides with a 1.0 kg ball that is at rest. After the 'glancing' collision, the 2.0 kg ball is going [E30N] at 1.1 m/s. Determine the velocity of the 1.0 kg ball after the collision. What type of collision is this?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A large bowling ball rolls and collides with a smaller bowling ball which is at rest....
A large bowling ball rolls and collides with a smaller bowling ball which is at rest. The mass of the large bowling ball is 4550 g and the mass of the smaller bowling ball is 3880 g. The large bowling ball is rolling at 5.60 m/s before the collision and after the collision, it is rolling at 2.50 m/s. What is the velocity of the smaller bowling ball after the collision?
A ball of mass 0.484 kg moving east (+xdirection) with a speed of 3.76 m/s collides...
A ball of mass 0.484 kg moving east (+xdirection) with a speed of 3.76 m/s collides head-on with a 0.242 kg ball at rest. Assume that the collision is perfectly elastic.    A)What is be the speed of the 0.484-kg ball after the collision? B)What is be the direction of the velocity of the 0.484-kg ball after the collision? C)What is the speed of the 0.242-kg ball after the collision? D)What is the direction of the velocity of 0.242-kg ball after...
A 1.5 kg metal ball moving east at 50 m/s collides with a stationary wooden sphere....
A 1.5 kg metal ball moving east at 50 m/s collides with a stationary wooden sphere. The ball rebounds at an angle of 45° north of east and the wooden sphere leaves at 10.0 m/s and at an angle of 30° south of east. What is the mass of the wooden sphere and what is the speed of the metal ball after the collision?
One billiard ball with a mass of 0.50 kg is shot east at 2.5 m/s. A...
One billiard ball with a mass of 0.50 kg is shot east at 2.5 m/s. A second billiard ball with a mass of 0.25 kg is shot west at 2.0 m/s. The balls have a glancing collision, not a head-on collision, deflecting the first ball by 90° and sending it north at 1.0 m/s. What are the speed of the second ball after the collision? What is the direction of the second ball after the collision? Express your answer as...
A 5.0 kg bowling ball traveling 3.0 m/s collides with an 8.0 kg stationary bowling ball....
A 5.0 kg bowling ball traveling 3.0 m/s collides with an 8.0 kg stationary bowling ball. After the collision the 5.0 kg ball is deflected to the left from its original path by 30 degrees, while the 8.0 kg ball is deflected to the right at an angle of 45 degrees. What are the speeds of the two balls after the impact?
7. Ball A with mass 0.85 kg is rolling at 3.5 m/s [N] when it collides...
7. Ball A with mass 0.85 kg is rolling at 3.5 m/s [N] when it collides with stationary Ball B with mass 1.15 kg. After the collision, Ball A is moving 2.4 m/s [N40ºW]. Find the velocity of Ball B after the collision.  
A hard ball (1.0 kg) is moving 5 m/s and collides with an identical ball at...
A hard ball (1.0 kg) is moving 5 m/s and collides with an identical ball at rest. The collision istotally elastic, and in the center‐of‐mass frame the balls each deflect by 45 degrees. Find the velocities after the collision in the lab frame.
A bowling player throws a ball of mass 7 kg with a velocity of 5m/s and...
A bowling player throws a ball of mass 7 kg with a velocity of 5m/s and collides a pin of mass 1.6 kg. The ball and pin move seperately after the collision. a) What is the momentum of the ball before the collision b) Calculate the total momentum of the ball and the pin before the collision c) What is tge velocity of the pin after the collision if the velocity of the ball is 3 m/s.
A 7.50 kg bowling ball moving at 4.00 m/s makes an elastic head on collision with...
A 7.50 kg bowling ball moving at 4.00 m/s makes an elastic head on collision with a 2.50 kg bowling pin initially at rest. Find the velocity of the bowling pin after the collision.
A ball with a mass of 1.50 kg travelling +2.00 m/s collides with a stationary ball...
A ball with a mass of 1.50 kg travelling +2.00 m/s collides with a stationary ball with a mass of 1.00 kg. After the collision, the velocity of the 1.50 kg ball is +0.40 m/s. What is the velocity of the 1.00 kg ball after the collision? Select one: a. - 0.7 m/s b. + 3.6 m/s c. + 2.4 m/s d. + 1.8 m/s An 18 000 kg freight car travelling 1.75 m/s[E] collides with a 27 000 kg...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT