Question

Calculate the momentum p, kinetic energy K, and total energy E of an electron traveling at...

Calculate the momentum p, kinetic energy K, and total energy E of an electron traveling at each of the speeds tabulated below. v p (keV/c) K (keV) E (keV) (a) 0.05c (b) 0.3c (c) 0.6c.

v p (keV/c) K (keV) E (keV)
(a) 0.05c 1 2 3
(b) 0.3c 4 5 6
(c) 0.6c 7 8 9

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron has a kinetic energy K of 1 MeV and is incident on a proton...
An electron has a kinetic energy K of 1 MeV and is incident on a proton at rest in the laboratory. Calculate the speed of the CMS frame (The centre of mass, or centre of momentum, (CMS) frame is that in which the sum of the momenta (i.e., the total momentum) of all particles is zero) moving relative to the laboratory. (a) Express the initial energies Ee, Ep and initial momenta pe, pp of the electron and proton respectively (with...
What is the Kinetic Energy of an electron traveling at 0.8c. Its rest mass energy is...
What is the Kinetic Energy of an electron traveling at 0.8c. Its rest mass energy is 0.511 Mev. (b) What is the total energy? (c) What is the momentum ? Mass = 9.11 x 10^-31
In a head-on collision of an electron of kinetic energy of 2.044 MeV with a positron...
In a head-on collision of an electron of kinetic energy of 2.044 MeV with a positron at rest, the two particles are replaced by two photons of equal energy. If each photon is traveling at an angles θ with respect to the electron’s direction of motion, What is the energy E, momentum p (you can leave the answer in terms of c) and angle of θ of each photon? (For electron and positron mc2 = 0.511 MeV)
A non-relativistic electron has a kinetic energy of 5.4 eV. What is the energy of a...
A non-relativistic electron has a kinetic energy of 5.4 eV. What is the energy of a photon whose wavelength is the same as the de -Broglie wavelength of the electron? the electron? A) 2.4 keV B) 2.2 keV C) 2.0 keV D) 2.5 keV E) 2.7 keV
1) Free electron model: (a) Show that the mean kinetic energy of one electron in the...
1) Free electron model: (a) Show that the mean kinetic energy of one electron in the quantum mechanical free electron model is 3/5 E F at T = 0 K. (b) Calculate the Fermi energy and the mean kinetic energy for potassium in electron volts. Use that K has a relative atomic mass of M = 39.1 u and a density of 856 kg m^−3 . (c) Calculate the corresponding electron velocities. (d) Calculate the density of states at the...
Q31. Electrons are accelerated through a Potential difference of 3500 V. (a) Calculate the electron kinetic...
Q31. Electrons are accelerated through a Potential difference of 3500 V. (a) Calculate the electron kinetic energy (b) Calculate the electron speed (c) Calculate the electron momentum (d) Calculate the electron wavelength
1. What is the momentum (p) of a 960-MeV proton (that is, its kinetic energy is...
1. What is the momentum (p) of a 960-MeV proton (that is, its kinetic energy is 960 MeVMeV )? Express your answer with the appropriate units. 2. An electron (mmm = 9.11×10−31 kg ) is accelerated from rest to speed v by a conservative force. In this process, its potential energy decreases by 6.70×10−14 J . Determine the electron's speed, v. (in term of c.)
A proton has a total energy of E = 3.5 GeV. Determine the following physical quantities:...
A proton has a total energy of E = 3.5 GeV. Determine the following physical quantities: a) speed... v (in terms of c) b) momentum... p ( in units... kg m/s & MeV/c ) c) kinetic energy... K ( in units... J & MeV ).
An electron and positron (anti-electron) has rest energy 0.5 MeV. The two electron and positron traveling...
An electron and positron (anti-electron) has rest energy 0.5 MeV. The two electron and positron traveling in opposite direction at a speed of 0.99999*ccollide to form a new particle with a huge mass in the lab. A) What is the total energy of the two particles?   B) What is their Kinetic energy at that speed? C) What is the momentum of the two particles? D) What is the rest mass of the new particle discovered?
Calculate the linear momentum, and the de Broglie wavelength of: a) a 0.75 kg bullet that...
Calculate the linear momentum, and the de Broglie wavelength of: a) a 0.75 kg bullet that is fired at a speed of 100 m / s, b) a non-relativistic electron with a kinetic energy of 2.0 eV, and c) a relativistic electron with a kinetic energy of 208 keV. !!!! # !! Remember that for relativistic particles: ? = ? ? + ? "? and ? = ?? = ? + ?" ?, the mass of the electron is 9.11...