Question

SHOW ALL WORK Two small nonconducting spheres have a total charge of 95.0 μC . A)...

SHOW ALL WORK

Two small nonconducting spheres have a total charge of 95.0 μC .

A) When placed 1.16 m apart, the force each exerts on the other is 10.4 N and is repulsive. What is the charge on each?

B)What if the force were attractive?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two small nonconducting spheres have a total charge of Q = Q1+ Q2 = 95.0 μC,...
Two small nonconducting spheres have a total charge of Q = Q1+ Q2 = 95.0 μC, Q1<Q2. When placed 32.0 cm apart, the force each exerts on the other is 12.5 N and is repulsive. a) What is the charge Q1? b) What is the charge Q2? c) What would Q1 be if the force were attractive?
A total charge of 7.50 × 10−6 C is distributed on two different small metal spheres....
A total charge of 7.50 × 10−6 C is distributed on two different small metal spheres. When the spheres are 6.30 cm apart, they each feel a repulsive force of 21.4 N. What is the charge on each sphere?
Two small identical conducting spheres are placed with their centers 0.65 m apart. One is given...
Two small identical conducting spheres are placed with their centers 0.65 m apart. One is given a charge of 12 ? 10?9 C, the other a charge of ?17 ? 10?9 C. (a) Find the electrostatic force exerted on one sphere by the other. magnitude N direction ---Select--- attractive repulsive (b) The spheres are connected by a conducting wire. Find the electrostatic force between the two after equilibrium is reached, where both spheres have the same charge. magnitude N direction...
A total charge of 3.73 C is distributed on two metal spheres. When the spheres are...
A total charge of 3.73 C is distributed on two metal spheres. When the spheres are 10.00 cm apart, they each feel a repulsive force of 4.8*10^11 N. How much charge is on the sphere which has the lower amount of charge?
5. Two identical metal spheres are placed 15.0 cm apart. A charge of 6.00 µC is...
5. Two identical metal spheres are placed 15.0 cm apart. A charge of 6.00 µC is placed on one sphere while a charge of −2.00 µC is placed upon the other. What is the force on each sphere? If the two spheres are brought together and touched and then separated to their original separation, what will be the force on each sphere? Answer: F12 =4.80 N attractive     q = 2.00 μC           F12 = 1.60 N repulsive 7. Three charges q1...
Two identical small metal spheres initially carry charges 푞1and 푞2. When they’re 1.0 m apart, they...
Two identical small metal spheres initially carry charges 푞1and 푞2. When they’re 1.0 m apart, they experience a 2.5-N attractive force. Then they’re brought together so charge moves from one to the other until they have the same net charge. They’re again placed 1.0 m apart, and now they repel with a 2.5-N force. What were the original charges 푞1and 푞2?
1. A −1.0 μC charge experiences a 10 N downward force in an electric field. What...
1. A −1.0 μC charge experiences a 10 N downward force in an electric field. What force would a 1.0 μC charge experience in the same field? 2. Two charged spheres are 24 cm apart. The spheres are moved so that the force on each of them is tripled. How far apart are they now? Show your work.
Two small metal spheres are 26.0 cm apart. The spheres have equal amounts of negative charge...
Two small metal spheres are 26.0 cm apart. The spheres have equal amounts of negative charge and repel each other with a force of 0.036 N. What is the charge on each sphere? A +2.5 nC point charge is 3.3 cm away from a -3.1 nC point charge. What are the magnitude and direction of the acceleration of an electron at a point where the electric field has magnitude 6600 N/C and is directed due north?
Two small, identical conducting spheres repel each other with a force of 0.035 N when they...
Two small, identical conducting spheres repel each other with a force of 0.035 N when they are 0.55 m apart. After a conducting wire is connected between the spheres and then removed, they repel each other with a force of 0.065 N. What is the original charge on each sphere? (Enter the magnitudes in C.) Smaller Value: Larger Value:
Two small spheres are given identical positive charges. When they are 3 cm apart, the repulsive...
Two small spheres are given identical positive charges. When they are 3 cm apart, the repulsive force on each of them is 0.005 N. What would the force be if (a) the distance is changed to 2.8 cm? (b) one charge is made 5 times larger than the other? (c) both charges are made 6 times larger? (d) one charge is made 5 times larger than the other, and the distance is changed to 2.3 cm? Round all your answers...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT