Question

At time t = 0 s, a puck is sliding on a horizontal table with a...

At time t = 0 s, a puck is sliding on a horizontal table with a velocity 3.00 m/s, 65 above the +x axis. As the puck slides, a constant acceleration acts on it that has the following components: ax = -0.460 m/s2 and ay = -0980 m/s2. What is the velocity of the puck at time t = 1.50 s?

a 1.83 m/s, 62 degrees b. 2.04 m/s, 71.3 degrees c. 1.06 m/s, 58.7 degrees d. 2.20 m/s, 55.0 degrees e. 1.38 m/s, 65.2 degrees

Homework Answers

Answer #1

Let us calculate final x velocity

ux = 3 cos65 = 1.27

vx = ux + axt

vx = 1.27 + (-0.460)(1.5)

vx = 0.58 m/s

Let us calculate final y velocity

uy = 3 sin 65 = 2.72 m/s

vy = uy + ayt

vy = 2.72 + (-0.980)(1.5)

vy = 1.25 m/s

The velcoity magnitude will be

v = 1.38 m/s

The angle will be given by

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
at time t=0 s, an object is moving on a horizontal plane with a velocity v0x=1.5...
at time t=0 s, an object is moving on a horizontal plane with a velocity v0x=1.5 m/s , v0y=3.5 m/s. as the object slides, a constant acceleration acts on it that has the following components: ax=-2.3 m/s^2 and ay=4 m/s^2 . determine the magnitude of the displacement of the object after 2s
Starting at t = 0 s , a horizontal net force F? =( 0.290 N/s )ti^+(-0.460...
Starting at t = 0 s , a horizontal net force F? =( 0.290 N/s )ti^+(-0.460 N/s2 )t2j^ is applied to a box that has an initial momentum p? = ( -3.05 kg?m/s )i^+( 4.00 kg?m/s )j .What is the momentum of the box at t = 2.10 s ?
A fish swimming in a horizontal plane has velocity i = (4.00 + 1.00 ) m/s...
A fish swimming in a horizontal plane has velocity i = (4.00 + 1.00 ) m/s at a point in the ocean where the position relative to a certain rock is i = (16.0 − 1.80 ) m. After the fish swims with constant acceleration for 17.0 s, its velocity is = (23.0 − 1.00 ) m/s. (a) What are the components of the acceleration of the fish? ax = m/s2 ay = Review the definition of average acceleration and...
computer model displays the motion of a particle on a coordinate system in real time. At...
computer model displays the motion of a particle on a coordinate system in real time. At time t = 0, the particle is at the origin of the coordinate system and has velocity components vx = 0 and vy = 5.2 m/s. The particle has acceleration components of ax = −4.4 m/s2 and ay = 0. (a) What are the x and y positions of the particle at t = 6.0 s? x = m y = m (b) What...
At a time t = 2.90 s , a point on the rim of a wheel...
At a time t = 2.90 s , a point on the rim of a wheel with a radius of 0.180 m has a tangential speed of 55.0 m/s as the wheel slows down with a tangential acceleration of constant magnitude 10.8 m/s^2 . A) Calculate the wheel's constant angular acceleration. B) Calculate the angular velocity at t = 2.90 s . C) Calculate the angular velocity at t=0. D) Through what angle did the wheel turn between t=0 and...
A particle moves in the xy plane, starting from the origin at t=0 with an initial...
A particle moves in the xy plane, starting from the origin at t=0 with an initial velocity having an x-component of 6 m/s and y component of 5 m/s. The particle experiences an acceleration in the x-direction, given by ax=4t m/s2. Determine the acceleration vector at any later time. Determine the total velocity vector at any later time Calculate the velocity and speed of the particle at t=5.0 s, and the angle the velocity vector makes with the x-axis. Determine...
At a time t = 3.10 s , a point on the rim of a wheel...
At a time t = 3.10 s , a point on the rim of a wheel with a radius of 0.210 m has a tangential speed of 51.0 m/s as the wheel slows down with a tangential acceleration of constant magnitude 10.6 m/s2 . Calculate the wheel's constant angular acceleration.  rad/s^2   Calculate the angular velocity at t = 3.10 s. rad/s Calculate the angular velocity at t=0. rad/s Through what angle did the wheel turn between t=0 and t = 3.10...
Sally is driving along a straight highway. At t = 0, when she is moving in...
Sally is driving along a straight highway. At t = 0, when she is moving in the +x direction at 10 m/s, she passes a signpost at x = 50 m. Her acceleration as a function of time is ax = 2.0 m/s2 – (0.10 m/s3)t . (a) Find her velocity and position x as a function of time. (b) When is her velocity greatest? (c) What is the maximum velocity? (d) Where is the car when it reaches that...
10) At a time t = 2.90 s , a point on the rim of a...
10) At a time t = 2.90 s , a point on the rim of a wheel with a radius of 0.200 m has a tangential speed of 45.0 m/s as the wheel slows down with a tangential acceleration of constant magnitude 10.3 m/s2 . Part A Calculate the wheel's constant angular acceleration.] Part B Calculate the angular velocity at t = 2.90 s . Part C Calculate the angular velocity at t=0. Part D Through what angle did the...
A 0.85 kg block slides 3.3 m across a frictionless, horizontal table at 2.2 m/s, moving...
A 0.85 kg block slides 3.3 m across a frictionless, horizontal table at 2.2 m/s, moving left. Once the block hits the spring, it sticks, compressing the spring 70 cm before the block stops and reverses direction. The block then continues to bounce back and forth, still attached to the spring. The spring constant is 8.4 N/m. Ignore air resistance. (b) [3 points] Plot the velocity of the block as a function of time, with t = 0 when the...