Question

You shoot a 0.0050-kg bullet into a 2.0-kg wooden block at rest on a horizontal surface....

You shoot a 0.0050-kg bullet into a 2.0-kg wooden block at rest on a horizontal surface. After hitting dead center on a hard knot that runs through the block horizontally, the bullet pushes out the knot. It takes the bullet 1.0 ms to travel through the block, and as it does so, it experiences an x component of acceleration of -4.8× 10^5 m/s2. After the bullet pushes the knot out, the knot and bullet together have an x component of velocity of +10 m/s. The knot carries 10% of the original inertia of the block.

What is the initial velocity of the bullet?

Using conservation of momentum, compute the final velocity of the block after the collision.

Calculate the initial kinetic energy of the block-knot-bullet system.

Calculate the final kinetic energy of the block-knot-bullet system.

Does the kinetic energy of the system change during the collision?

Which type of collision is it?

Homework Answers

Answer #1

Inertia of the knot = 0.2 kg

We can perceive the system as bullet hitting block and knot and finally all three bodies move

We know that v = u-at

Since the bullet has a final velocity of v = 10m/s

u = 10+4.8*10^5*10^-3 = 490m/s

So Initial KE of system = 0.5*0.005*490^2 = 600.25 J

Now Using conservation of momentum

0.005*490 = 0.005*10+0.2*10+2*v

So v = 0.2m/s final velocity of block

So final KE = 0.5*(2*0.2^2 + 0.2*10^2 + 0.005*10^2) = 10.29 J

This is an inelastic collision

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A wooden block is at rest on a frictionless horizontal surface and is connected to a...
A wooden block is at rest on a frictionless horizontal surface and is connected to a spring (k =150 N/m). The mass of the wooden block is 0.10 kg. A bullet (mass 0.012 kg) and velocity 270 m/s is fired horizontally into the wooden block. After collision the bullet stays in the block. (a) Find the speed of the bullet-block system right after the collision. (b) If the bullet-block system compresses the spring by a maximum of d. Find d
A bullet of mass 2.0×10−3 kg embeds itself in a wooden block with mass 0.991 kg...
A bullet of mass 2.0×10−3 kg embeds itself in a wooden block with mass 0.991 kg , which then compresses a spring (k = 200 N/m ) by a distance 3.5×10−2 m before coming to rest. The coefficient of kinetic friction between the block and table is 0.52. a)What is the initial speed of the bullet? b)What fraction of the bullet's initial kinetic energy is dissipated (in damage to the wooden block, rising temperature, etc.) in the collision between the...
a bullet of mass m=5g is fired into a wooden block with mass M= 0.995 kg...
a bullet of mass m=5g is fired into a wooden block with mass M= 0.995 kg which then compresses a spring (k=100N/m by a distance of x=0.1 before coming to rest. the bullet remains embedded in the wooden block. ignore friction between the block and table. a) what is initial speed of the bullet? b) calculate total kinetic energy of the bullet block-system immediately before and after the collision. is the collision between the bullet and the block elastic or...
A bullet of mass 1.4×10−3 kg embeds itself in a wooden block with mass 0.987 kg...
A bullet of mass 1.4×10−3 kg embeds itself in a wooden block with mass 0.987 kg , which then compresses a spring (k = 130 N/m ) by a distance 5.5×10−2 m before coming to rest. The coefficient of kinetic friction between the block and table is 0.46. a)What is the initial speed of the bullet? b)What fraction of the bullet's initial kinetic energy is dissipated (in damage to the wooden block, rising temperature, etc.) in the collision between the...
A bullet of mass ma= 0.01 kg moving with an initial speed of va= 200 m/s...
A bullet of mass ma= 0.01 kg moving with an initial speed of va= 200 m/s embeds itself in a wooden block with mass mb= 0.99 kg moving in the same direction with an initial speed vb= 2.6 m/s. What is the speed of the bullet-embedded block after the collision? What is the total kinetic energy of the bullet and block system before and after the collision?
A bullet (m = 0.04kg) with a velocity of 285m/s hits a block (M = 2.3kg)...
A bullet (m = 0.04kg) with a velocity of 285m/s hits a block (M = 2.3kg) that is initially at rest.  The bullet passes through the block and emerges with a velocity of 85m/s.   (a) What is the velocity of the block after the bullet leaves it? (b) What is the total kinetic energy of this system before the collision? (c) What is the total kinetic energy of this system after the collision?
A thin block of soft wood with a mass of 0.0840 kg rests on a horizontal...
A thin block of soft wood with a mass of 0.0840 kg rests on a horizontal frictionless surface. A bullet with a mass of 4.67 g is fired with a speed of 558 m/s at a block of wood and passes completely through it. The speed of the block is 17.0 m/s immediately after the bullet exits the block. (a) Determine the speed of the bullet as it exits the block. m/s (b) Determine if the final kinetic energy of...
A thin block of soft wood with a mass of 0.076 kg rests on a horizontal...
A thin block of soft wood with a mass of 0.076 kg rests on a horizontal frictionless surface. A bullet with a mass of 4.67 g is fired with a speed of 613 m/s at a block of wood and passes completely through it. The speed of the block is 20 m/s immediately after the bullet exits the block. (a) Determine the speed (in m/s) of the bullet as it exits the block. _ m/s (b) Determine if the final...
A bullet with mass m(lowercase m) is fired into a block of wood with mass M(uppercase...
A bullet with mass m(lowercase m) is fired into a block of wood with mass M(uppercase M), suspended like a pendulum, and makes a completely inelastic collision with it. After the impact of the bullet, the block swings up to a maximum height h. Given the values of h = 5.00 cm = 0.0500 m, m = 6.75 g = 0.00675 kg, and M = 2.50 kg, (a) What is the (initial) velocity v_x of the bullet in m/s? (b)...
1. You shoot a bullet of mass m=0.025 kg into a wood box of mass M=1.7...
1. You shoot a bullet of mass m=0.025 kg into a wood box of mass M=1.7 kg which initially is at rest. After the impact, the wood with embedded bullet moves to the flat top of the hill, and it continues its motion on the top. Initial speed of the bullet before collision is vo=560 m/s. The height of the hill is h=0.3 m. The surface has no friction. At what speed the wooden block moves on the top of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT