Question

A small conducting spherical shell with inner radius a and outer radius b is concentric with...

A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d. The inner shell has a total charge of -2q and the outer shell has a total charge of +4q

.

Homework Answers

Answer #1

Statement 1:- The total charge on the inner surface of the small shell is -2q : False

Statement 2:-The radial component of the electric field in the region r > d is given by +4q/(4πε0r2): False because

total charge inside the Gaussian surface.


3. The total charge on the outer surface of the small shell is -6q. False


4. The radial component of the electric field in the region c < r < d is given by -2q/(4πε0r2). False

Because electric field inside a conductor is zero.


5. The total charge on the inner surface of the large shell is -6q. True
6. The total charge on the outer surface of the large shell is +2q. True
7. The radial component of the electric field in the region r < a is given by -2q/(4πε0r2). False

No charge is enclosed inside the Gaussian surface is zero.


  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A small conducting spherical shell with inner radius a and outer radius b is concentric with...
A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d. The inner shell has a total charge of -1q and the outer shell has a total charge of +3q. Select True or False for the following statements. True False The radial component of the electric field in the region r > dis given by +2q/(4πε0r2). True False The total charge on...
A conducting spherical shell of inner radius and outer radius has a charge Q on it....
A conducting spherical shell of inner radius and outer radius has a charge Q on it. The flux through a concentric spherical surface of radius is . An additional charge, also Q, is then added to the sphere. What is the change in flux through a concentric spherical surface of radius when the additional charge is placed on the conducting shell?
Consider two neutral, hollow conducting spherical shells. The inner shell will be denoted by S1 and...
Consider two neutral, hollow conducting spherical shells. The inner shell will be denoted by S1 and the outer shell will be denoted by S2. The inner radius of S1 is r1. The outer radius of S1 is r2. The inner radius of S2 is r3 and the outer radius of S2 is r4. S1 and S2 are concentric with S1 contained within S2. S1 has a total charge of Q1 and S2 has a total charge of Q2. Find: a)...
A neutral hollow spherical conducting shell of inner radius 1.00 cm and outer radius 3.00 cm...
A neutral hollow spherical conducting shell of inner radius 1.00 cm and outer radius 3.00 cm has a +2.00-µC point charge placed at its center. Find the surface charge density how does the magnitude of the charge and radius relate? How does a -2.00µC get involved in this problem?
A hollow non conducting spherical shell A (from r = 2cm to r= 3cm) with a...
A hollow non conducting spherical shell A (from r = 2cm to r= 3cm) with a charge distribution of rho= 2r (c/m^3) is surrounded by a larger concentric spherical neutral conducting shell of radius (r= 4 cm to r = 5cm) . If the inner charge is Q find the electric field in the region between A and B as a function of the distance r. what is the distribution of charges on the inner and outer surfaces of shell...
A spherical, non-conducting shell of inner radius r1 = 7 cm and outer radius r2= 16...
A spherical, non-conducting shell of inner radius r1 = 7 cm and outer radius r2= 16 cm carries a total charge Q = 18 nC distributed uniformly throughout the volume of the shell. What is the magnitude of the electric field at a distance r = 11 cm from the center of the shell? (k = 1/4πε0 = 8.99 × 109 N.m2/C2)
A nonconducting spherical shell, with an inner radius of 7.1 cm and an outer radius of...
A nonconducting spherical shell, with an inner radius of 7.1 cm and an outer radius of 11.4 cm, has charge spread nonuniformly through its volume between its inner and outer surfaces. The volume charge density ρ is the charge per unit volume, with the unit coulomb per cubic meter. For this shell ρ = b/r, where r is the distance in meters from the center of the shell and b = 3.8 μC/m2. What is the net charge in the...
Three concentric conducting spherical shells have radii a, b, and c such that a < b...
Three concentric conducting spherical shells have radii a, b, and c such that a < b < c. Initially the inner shell is uncharged, the middle shell has a positive charge +Q, and the outer shell has a negative charge –Q. (a) Find the electric potential of the three shells. (b) If the inner and outer shells are now connected by a wire that is insulated as it passes through the middle shell, what is the electric potential of each...
An uncharged spherical conducting shell surrounds a charge −2q at the center of the shell. Then...
An uncharged spherical conducting shell surrounds a charge −2q at the center of the shell. Then charge +3q is placed on the outside of the shell. When static equilibrium is reached, the charges on the inner and outer surfaces of the shell are respectively A +q, −q. B +q, +2q. C +2q, +q. D −q, +q. E +3q, 0.
Given a spherical dielectric shell (inner radius a, outer radius b, dielectric constant k) and a...
Given a spherical dielectric shell (inner radius a, outer radius b, dielectric constant k) and a point charge q, infinitely separated. Now let the point charge be placed at the center of the dielectric shell. Determine the change in energy of the system?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT