Question

The electric potential at a position located a distance of 21.6 mm from a positive point...

The electric potential at a position located a distance of 21.6 mm from a positive point charge of 7.80×10-9C and 14.2 mm from a second point charge is 1.30 kV. Calculate the value of the second charge.

Homework Answers

Answer #1

According to the concept of the electric potential

Given that

Electric potential V=1.3*10^3 V

Charge q1=7.8*10^-9 C

Distance r1=21.6 mm

Distance r2=14.2 mm

Now we find the second charge

Basing on the concept of super position

V=K(q1/r1+q2/r2)

1.3*10^3=9*10^9{(7.8*10^-9/0.0216)+(q2/0.0142)}

1.3*10^-6/9=3.6*10^-7+q2/0.0142

0.14*10^-6=0.36*10^6+q2/0.0142

(0.14-0.36)*10^-6=q2/0.0142

-0.22*10^-6=q2/0.0142

Charge q2=(0.0142*-0.22*10^-6)=-0.003124*10^-6

=-3.1*10^-9 C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The electric potential at a position located a distance of 18.3 mm from a positive point...
The electric potential at a position located a distance of 18.3 mm from a positive point charge of 7.80×10-9C and 12.1 mm from a second point charge is 1.42 kV. Calculate the value of the second charge.
The electric potential at a position located a distance of 22.8 mm from a positive point...
The electric potential at a position located a distance of 22.8 mm from a positive point charge of 7.10×10-9C and 13.6 mm from a second point charge is 1.10 kV. Calculate the value of the second charge. The answer is NOT -2.56x10^-3C/ Please provide answer in proper units.
The electric potential at a position located a distance of 21.9 mm from a positive point...
The electric potential at a position located a distance of 21.9 mm from a positive point charge of 8.40×10^-9C and 10.3 mm from a second point charge is 1.26 kV. Calculate the value of the second charge. The potential at a position is the sum of the individual contributions to the potential by each of the 2 charges. The sign is important. Calculate the potential due to the first charge. The difference is due to the second charge.
The electric potential at a position located a distance of 21.9 mm from a positive point...
The electric potential at a position located a distance of 21.9 mm from a positive point charge of 6.70
5. (a) Point A is 1 mm away from a proton, and point B is 0.1...
5. (a) Point A is 1 mm away from a proton, and point B is 0.1 mm away from the same proton. (i) What is the electric potential at point A and point B due to the proton? (ii) What is the electric potential difference between point A and point B? (b) Sketch the electric equipotential lines for: Positive charge, Negative charge, Positive charge & negative charge, Positive charge & Negative charge on rectangular bar.
A proton is located at a distance of 0.050 m from a point charge of +8.30...
A proton is located at a distance of 0.050 m from a point charge of +8.30 ?C. The repulsive electric force moves the proton until it is at a distance of 0.15 m from the charge. Suppose that the electric potential energy lost by the system were carried off by a photon. What would be its wavelength? answer isn't 1.248e-4nm
A 9-μC positive point charge is located at the origin and a 10 μC positive point...
A 9-μC positive point charge is located at the origin and a 10 μC positive point charge is located at x = 0.00 m, y = 1.0 m. Find the coordinates of the point where the net electric field strength due to these charges is zero.
A point charge q1q1q_1 = 4.10 nCnC is located on the x-axis at xxx = 2.15...
A point charge q1q1q_1 = 4.10 nCnC is located on the x-axis at xxx = 2.15 mm , and a second point charge q2q2q_2 = -6.85 nCnC is on the y-axis at yyy = 1.30 mm . a)What is the total electric flux due to these two point charges through a spherical surface centered at the origin and with radius r2r2r_2 = 1.50 mm ? b)What is the total electric flux due to these two point charges through a spherical...
1. A -140 μC charge is located 60 mm from a point we will designate as...
1. A -140 μC charge is located 60 mm from a point we will designate as G and is 30mm from a point we will designate as H. a) What is the electrical potential difference between the two points (G and H)? b) If a charge of +15 μC is moved from the point G to the point H, what is the work done by the electric field? 2. Determine the resistance of a motor which operates at a power...
An electric field has an electric field strength 6000. N/C at a distance of 1.5 m....
An electric field has an electric field strength 6000. N/C at a distance of 1.5 m. What is the strength of the field at a distance of 6.0 m? 24. An alpha (α) particle is positioned in an electric field such that the gravitational force acting on it is equal to the electrostatic force.              (qα = 3.2 x 10–19 C and mα = 6.64 x 10–27 kg) a) What is the direction of the electric field at this point?...