Question

In a head-on collision of an electron of kinetic energy of 2.044 MeV with a positron...

In a head-on collision of an electron of kinetic energy of 2.044 MeV with a positron at rest, the two particles are replaced by two photons of equal energy. If each photon is traveling at an angles θ with respect to the electron’s direction of motion, What is the energy E, momentum p (you can leave the answer in terms of c) and angle of θ of each photon? (For electron and positron mc2 = 0.511 MeV)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron and an antielectron (positron) each have a rest energy of 0.511 MeV , or...
An electron and an antielectron (positron) each have a rest energy of 0.511 MeV , or approximately 8.2×10-14 J . When an electron and a positron are both stationary and located next to each other during an annihilation process, their mass energy converts to electromagnetic energy released as photons, electromagnetic particles that have momentum but no mass and that travel at the speed of light. What is the minimum number of photons that could be released, and how much energy...
An electron and positron (anti-electron) has rest energy 0.5 MeV. The two electron and positron traveling...
An electron and positron (anti-electron) has rest energy 0.5 MeV. The two electron and positron traveling in opposite direction at a speed of 0.99999*ccollide to form a new particle with a huge mass in the lab. A) What is the total energy of the two particles?   B) What is their Kinetic energy at that speed? C) What is the momentum of the two particles? D) What is the rest mass of the new particle discovered?
An electron and a positron, each with a kinetic energy of 2.50 MeV, annihilate, creating two...
An electron and a positron, each with a kinetic energy of 2.50 MeV, annihilate, creating two photons that travel away in opposite directions.What is the frequency of each photon?
An electron has a kinetic energy K of 1 MeV and is incident on a proton...
An electron has a kinetic energy K of 1 MeV and is incident on a proton at rest in the laboratory. Calculate the speed of the CMS frame (The centre of mass, or centre of momentum, (CMS) frame is that in which the sum of the momenta (i.e., the total momentum) of all particles is zero) moving relative to the laboratory. (a) Express the initial energies Ee, Ep and initial momenta pe, pp of the electron and proton respectively (with...
What is the Kinetic Energy of an electron traveling at 0.8c. Its rest mass energy is...
What is the Kinetic Energy of an electron traveling at 0.8c. Its rest mass energy is 0.511 Mev. (b) What is the total energy? (c) What is the momentum ? Mass = 9.11 x 10^-31
In a Compton collision between a 10 MeV photon and an electron, the energy of the...
In a Compton collision between a 10 MeV photon and an electron, the energy of the photon scattered at a right angle is approximately
An electron and a positron are moving toward each other with equal speeds of 3 x...
An electron and a positron are moving toward each other with equal speeds of 3 x 106 m/s. The two particles annihilate each other and produce two photons of equal energy. (a) Do you need to use relativity for this problem? Support your answer numerically, and comment intelligently. (b) What were the deBroglie wavelengths of the electron and positron? (c) Find the energy of each photon. (d) Find the momentum of each photon. (e) Find the wavelength of each photon.
An electron and a positron (an anti-matter electron) meet and completely annihilate, creating two photons of...
An electron and a positron (an anti-matter electron) meet and completely annihilate, creating two photons of identical energy. What is the energy of each photon created? Note: the positron has exactly the same mass as the electron. about 512 eV about 5 eV about 0.51 MeV about 5.1 MeV
An electron initially at rest recoils after a head-on collision with a 8.27-keV photon. Determine the...
An electron initially at rest recoils after a head-on collision with a 8.27-keV photon. Determine the kinetic energy acquired by the electron.
An electron initially at rest recoils after a head-on collision with a 5.05-keV photon. Determine the...
An electron initially at rest recoils after a head-on collision with a 5.05-keV photon. Determine the kinetic energy acquired by the electron in keV
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT