Question

A particle moves in the x direction according to the equation x(t)=bt3+ct2+d, where b = 7.0...

A particle moves in the x direction according to the equation x(t)=bt3+ct2+d, where b = 7.0 m/s3 , c = -11 m/s2 , and d = 20 m.

What is its AVERAGE ACCELERATION in the interval t = 2.0 s to t = 5.0 s?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) An electron has a velocity of 7.0 x 106 m/s in the positive x direction...
a) An electron has a velocity of 7.0 x 106 m/s in the positive x direction at a point where the magnetic field has the components Bx = 3.0 T, By = 2.5 T, and Bz = 2.0 T. What is the magnitude of the acceleration of the electron at this point (in 1018 m/s2)? (me = 9.11 x 10-31 kg, e = 1.6 x 10-19 C) b) A particle (q = 5.0 nC, m = 3.0 μg) moves in...
The equation x(t) = −bt2 + ct3 gives the position of a particle traveling along the...
The equation x(t) = −bt2 + ct3 gives the position of a particle traveling along the x axis at any time. In this expression, b = 4.00 m/s2, c = 4.80 m/s3, and x is in meters when t is entered in seconds. For this particle, determine the following. (Indicate the direction with the sign of your answer as applicable.) (a) displacement and distance traveled during the time interval t = 0 to t = 3 s displacement     distance     (b)...
The position of a particle moving along the x axis depends on the time according to...
The position of a particle moving along the x axis depends on the time according to the equation x = ct2 − bt3, where x is in meters and t in seconds. For the following, let the numerical values of c and b be 5.1 and 1.5, respectively. (For vector quantities, indicate direction with the sign of your answer.) (c) At what time does the particle reach its maximum positive x position? From t = 0.0 s to t =...
A particle moves according to a law of motion s = f(t), t ≥ 0, where...
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = t3 − 9t2 + 15t (a) Find the velocity at time t. v(t) =      (b) What is the velocity after 4 s? v(4) =  ft/s (c) When is the particle at rest? t =  s (smaller value) t =  s (larger value) (d) When is the particle moving in the positive direction? (Enter your answer...
An object moves along the x axis according to the equation x = 3.25t2 − 2.00t...
An object moves along the x axis according to the equation x = 3.25t2 − 2.00t + 3.00, where x is in meters and t is in seconds. (a) Determine the average speed between t = 3.30 s and t = 4.40 s. m/s (b) Determine the instantaneous speed at t = 3.30 s. m/s Determine the instantaneous speed at t = 4.40 s. m/s (c) Determine the average acceleration between t = 3.30 s and t = 4.40 s....
An object moves along the x axis according to the equation x = 3.65t2 − 2.00t...
An object moves along the x axis according to the equation x = 3.65t2 − 2.00t + 3.00, where x is in meters and t is in seconds. (a) Determine the average speed between t = 1.50 s and t = 3.50 s. m/s (b) Determine the instantaneous speed at t = 1.50 s. m/s Determine the instantaneous speed at t = 3.50 s. m/s (c) Determine the average acceleration between t = 1.50 s and t = 3.50 s....
An object moves along the x axis according to the equation x = 4.00t2 − 2.00t...
An object moves along the x axis according to the equation x = 4.00t2 − 2.00t + 3.00, where x is in meters and t is in seconds. (a) Determine the average speed between t = 1.60 s and t = 3.20 s. m/s (b) Determine the instantaneous speed at t = 1.60 s. m/s Determine the instantaneous speed at t = 3.20 s. m/s (c) Determine the average acceleration between t = 1.60 s and t = 3.20 s....
An object moves along the x axis according to the equation x = 4.00t2 − 2.00t...
An object moves along the x axis according to the equation x = 4.00t2 − 2.00t + 3.00, where x is in meters and t is in seconds. (a) Determine the average speed between t = 1.60 s and t = 3.20 s. The average speed is the distance traveled divided by the time. Is the distance traveled equal to the displacement in this case? m/s (b) Determine the instantaneous speed at t = 1.60 s.   m/s Determine the instantaneous...
A particle moves according to a law of motion s = f(t), t ≥ 0, where...
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. (If an answer does not exist, enter DNE.) f(t) = t3 − 8t2 + 23t (a) Find the velocity at time t. v(t) =    ft/s (b) What is the velocity after 1 second? v(1) =   ft/s (c) When is the particle at rest? (d) When is the particle moving in the positive direction? (Enter your...
A particle moves according to a law of motion s = f(t), t ≥ 0, where...
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. (If an answer does not exist, enter DNE.) f(t) = t3 − 8t2 + 26t A. Find the acceleration at time t and after 1 second. a(t) = ft/s2 a(1) = ft/s2 B. When is the particle speeding up? (Enter your answer using interval notation.) c. When is it slowing down? (Enter your answer using...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT