Question

The position of a 48 g oscillating mass is given by x(t)=(1.7cm)cos11t, where t is in...

The position of a 48 g oscillating mass is given by x(t)=(1.7cm)cos11t, where t is in seconds.

Determine the velocity at t = 0.42 s .

Homework Answers

Answer #1

given position x=1.7cm cos11t

now for the velocity , v=dx/dt

                                     v=-11(1.7cm) sin11t

                                     v=18.6 cm/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The position of a 46 g oscillating mass is given byx(t)=(2.0cm)cos13t, where t is in seconds....
The position of a 46 g oscillating mass is given byx(t)=(2.0cm)cos13t, where t is in seconds. Determine the amplitude. Determine the period. Determine the spring constant. Determine the maximum speed. Determine the total energy Determine the velocity at t = 0.43s
The position of a 47 g oscillating mass is given by x(t)=(1.7cm)cos13t, where t is in...
The position of a 47 g oscillating mass is given by x(t)=(1.7cm)cos13t, where t is in seconds. A: Determine the amplitude. B. Determine the period C. Determine the Spring constant. D. Determine the maximum speed. E. Determine the total energy. F. Determine the velocity at t = 0.45s I am able to check the answers, but I'm not sure what the process is to get the answer. Every method I try isn't getting me to the right answers. Answers are:...
The position of a 55 gg oscillating mass is given by x(t)=(1.5cm)cos10tx(t)=(1.5cm)cos⁡10t, where tt is in...
The position of a 55 gg oscillating mass is given by x(t)=(1.5cm)cos10tx(t)=(1.5cm)cos⁡10t, where tt is in seconds. What is the amplitude, period, spring constant, maximum speed, total energy and velocity at T=.36s.
A mass of 100 g is attached to a spring and oscillating with simple harmonic motion....
A mass of 100 g is attached to a spring and oscillating with simple harmonic motion. The position of the mass at all times is given by x(t) = (2.0 cm) cos(2t), where t is in seconds, and the 2 is in rad/s. Determine the following: (a) The amplitude (in cm). cm (b) The frequency. Hz (c) The maximum speed in cm/s. Think about the expression you can write for v(t). Where is the maximum velocity in that expression? You...
13.7 The equation for the position as a function of time for an oscillating spring is...
13.7 The equation for the position as a function of time for an oscillating spring is given by x  30cmcos 25t where x is in centimeters when t is in seconds. a) What is the frequency? b) If the mass on the spring is 1.2 kg, what is the spring constant of the spring? c) What is the position at t = 0.025 s? d) What is the position at t = 0.09 s ? 13.8 The maximum potential...
the position of an object in one dimension is given by X(t)=A+Bt+Ct^2, where x is in...
the position of an object in one dimension is given by X(t)=A+Bt+Ct^2, where x is in meters and t is in seconds. find the velocity and acceleration at 3 seconds. what are the units for A, B, and C?
The position of a mass oscillating on a spring is given by x=(7.2cm)cos[2πt/(0.78s)]. What is the...
The position of a mass oscillating on a spring is given by x=(7.2cm)cos[2πt/(0.78s)]. What is the frequency of this motion? When is the mass first at the position x=−7.2cm?
The position of a particle moving with constant acceleration is given by x(t) = 2t2 +...
The position of a particle moving with constant acceleration is given by x(t) = 2t2 + 8t + 4 where x is in meters and t is in seconds. (a) Calculate the average velocity of this particle between t = 6 seconds and t = 9 seconds.   (b) At what time during this interval is the average velocity equal to the instantaneous velocity?   
A particle moves with position r(t) = x(t) i + y(t) j where x(t) = 10t2...
A particle moves with position r(t) = x(t) i + y(t) j where x(t) = 10t2 and y(t) = -3t + 2, with x and y in meters and t in seconds. (a) Find the average velocity for the time interval from 1.00 s to 3.00 s. (b) Find the instantaneous velocity at t = 1.00 s. (c) Find the average acceleration from 1.00 s to 3.00 s. (d) Find the instantaneous acceleration at t = 1.00 s.
The position of an object moving horizontally after t seconds is given by the function s...
The position of an object moving horizontally after t seconds is given by the function s =12t-t^3 ​, for t > 0​, where s is measured in​ feet, with s g> 0 corresponding to positions right of the origin. a. When is the object​ stationary, moving to the​ right, and moving to the​ left? b. Determine the velocity and acceleration of the object at t=4. c. Determine the acceleration of the object when its velocity is zero. d. On what...