Question

A uniform electric field of magnitude 364 N/C pointing in the positive x-direction acts on an...

A uniform electric field of magnitude 364 N/C pointing in the positive x-direction acts on an electron, which is initially at rest. The electron has moved 3.00 cm.
(a) What is the work done by the field on the electron?

(b) What is the change in potential energy associated with the electron?

(c) What is the velocity of the electron? Magnitude (m/s) ? Direction (+x, -x, -y, +y)?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A proton is acted on by an uniform electric field of magnitude 443 N/C pointing in...
A proton is acted on by an uniform electric field of magnitude 443 N/C pointing in the negative x direction. The particle is initially at rest. (a) In what direction will the charge move? ---Select--- +x direction ?x direction +y direction ?y direction +z direction ?z direction (b) Determine the work done by the electric field when the particle has moved through a distance of 3.15 cm from its initial position. J (c) Determine the change in electric potential energy...
A proton is acted on by an uniform electric field of magnitude 313 N/C pointing in...
A proton is acted on by an uniform electric field of magnitude 313 N/C pointing in the negative y direction. The particle is initially at rest. (a) In what direction will the charge move? (b) Determine the work done by the electric field when the particle has moved through a distance of 2.45 cm from its initial position. J (c) Determine the change in electric potential energy of the charged particle. J (d) Determine the speed of the charged particle....
A proton is acted on by an uniform electric field of magnitude 193 N/C pointing in...
A proton is acted on by an uniform electric field of magnitude 193 N/C pointing in the negative z direction. The particle is initially at rest. (a) In what direction will the charge move? (b) Determine the work done by the electric field when the particle has moved through a distance of 2.65 cm from its initial position. ____J (c) Determine the change in electric potential energy of the charged particle. _____J (d) Determine the speed of the charged particle.
A uniform electric field of magnitude 247 V/m is directed in the positive x direction. A...
A uniform electric field of magnitude 247 V/m is directed in the positive x direction. A +14.2 μC charge moves from the origin to the point (x, y) = (22.4 cm, 46.7 cm). What was the change in the potential energy of this charge? Through what potential difference did the charge move?
A uniform electric field of magnitude 260 V/m is directed in the positive x direction. A...
A uniform electric field of magnitude 260 V/m is directed in the positive x direction. A +12.0 µC charge moves from the origin to the point (x, y) = (20.0 cm, 50.0 cm). (a) What is the change in the potential energy of the charge field system? ______ J (b) Through what potential difference does the charge move? ______ V Full, detailed solutions please!
A beam of electrons is shot into a uniform downward electric field of magnitude 1.10 103...
A beam of electrons is shot into a uniform downward electric field of magnitude 1.10 103 N/C. The electrons have an initial velocity of 1.01 107 m/s, directed horizontally. The field acts over a small region, 5.00 cm in the horizontal direction. (a) Find the magnitude and direction of the electric force exerted on each electron. (b) How does the gravitational force on an electron compare with the electric force? (c) How far has each electron moved in the vertical...
A uniform electric field of magnitude 267 V/m is directed in the negative x direction. A...
A uniform electric field of magnitude 267 V/m is directed in the negative x direction. A -13.3 ?C charge moves from the origin to the point (x, y) = (17.8 cm, 48.2 cm). a.) What was the change in the potential energy of this charge? b.) Through what potential difference did the charge move?
QUESTION When an electron is released from rest in a constant electric field, how does the...
QUESTION When an electron is released from rest in a constant electric field, how does the electric potential energy associated with the electron, and the kinetic energy of the electron, change with time? (Select all that apply.) options:The electric potential energy becomes more negative.The electric potential energy becomes more positive.The kinetic energy becomes more negative.The kinetic energy stays the same.The electric potential energy stays the same.The kinetic energy becomes more positive. Use the worked example above to help you solve...
A uniform electric field of 2.0×105 N/C is oriented in the negative x direction. How much...
A uniform electric field of 2.0×105 N/C is oriented in the negative x direction. How much work must be done to move an electron 3.0 m in the positive x direction, if it begins and ends at rest?
A uniform (Constant in magnitude and direction) electric field has magnitude E and is directed in...
A uniform (Constant in magnitude and direction) electric field has magnitude E and is directed in the negative x direction. The potential difference between point a (at x= 0.50 m ) and point b (at x= 0.85 m ) is 370 V. A) Calculate the value of E B) A negatively charged point charge q=−0.200μC is moved from b to a. Calculate the work done on the point charge by the electric field.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT